Advertisement

Structural transformations in magnetorheological slurries induced by perturbations

  • E.M. de la Calleja MoraEmail author
  • J. L. Carrillo
  • M. E. Mendoza
  • F. Donado
Regular Article

Abstract

The pattern formation produced by the aggregation of the particles in magnetorheological dispersions when they are in the presence of a static magnetic field, and the process of reconstruction of these structures induced by the application of magnetic perturbations, are investigated experimentally and theoretically. Under the influence of a static magnetic field the aggregation of the dispersed particles generates a multifractal structure, whose corresponding hierarchical structure has been characterized by means of its mass fractal dimensions and other correlations. When this system is perturbed by an oscillatory magnetic field, in addition to the static one, the dispersion rearranges becoming, for certain values of the amplitude and frequency of the perturbation, a more compact and relatively more ordered structure. Here, the analysis of these phenomena is approached as if the pattern formation were a kind of glassy transformation in a supercooled liquid, and the effect of the perturbation were an annealing process. The role of the temperature is taken here by the ratio of the intensities of the applied fields. From high resolution photographs taken at different stages of the structure evolution, it is possible to calculate some complexity measures such as the singularity spectrum, the lacunarity index, enthalpy and the configurational entropy. On this basis it is possible to describe quantitatively these glassy-like transformations. The relaxation time that distinguishes between a cooling process that leads the structure to a glassy or a crystalline one, is experimentally obtained.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    Proceedings of the 12th International Conference on Electrorheological (ER) Fluids and Magnetorheological (MR) Suspensions, edited by R. Tao (World Scientific, Philadelphia, 2010)Google Scholar
  2. 2.
    G.L. Gulley, R. Tao, Phys. Rev. E 56, 4328 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    P.G. Debenedetti, S.K. Kumar, AIChEJ. 32, 1253 (1986)CrossRefGoogle Scholar
  4. 4.
    R. Tao, J. Phys.: Condens. Matter 13, R979 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    X. Tang, X. Zhang, R. Tao, in Proceedings of the 7th. Int. Conf. on ER fluids and MR suspensions, edited by R. Tao (World Scientific, Singapore, 2000), p. 3Google Scholar
  6. 6.
    L.C. Davis, J. Appl. Phys. 72, 1334 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Lebin, J. Phys.: Condens. Matter 14, 2303 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    H. Yan, D. Kessler, L.M. Sander, Phys. Rev. Lett. 64, 926 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    J.L. Carrillo, F. Donado, M.E. Mendoza, Phys. Rev. E 68, 061509 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    D.A. Weitz, M. Oliveria, Phys. Rev. Lett. 52, 1433 (1984)ADSCrossRefGoogle Scholar
  11. 11.
    D.A. Weitz, Phys. Rev. Lett. 54, 1416 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    F. Donado, Ph.D. thesis IFUAP, No. 139, 2002Google Scholar
  13. 13.
    J.L. Carrillo, E.M. De la Calleja, M.E. Mendoza, F. Donado, Ferroelectrics 338, 1 (2006)CrossRefGoogle Scholar
  14. 14.
    C.A. Angell, Science 267, 1924 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    F. Donado, U. Sandoval, J.L. Carrillo, Phys. Rev. E 79, 011406 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A. Chhabra, R.V. Jensen, Phys. Rev. Lett. 62, 1327 (1989)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
  18. 18.
    M. Barnsley, Fractals Everywhere (Academic Press, New York, 1988)Google Scholar
  19. 19.
    J.L. Carrillo, M.E. Mendoza, F. Donado, J. Stat. Mech. P06001 (2005), DOI:10.1088/1742-5468/2005/06/P06001Google Scholar
  20. 20.
    M.S. Shell, P.G. Debenedetti, Phys. Rev. E 69, 051102 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    F. Cervantes, thesis de Maestría, IFUAP, México, 2009Google Scholar
  22. 22.
    M.E. Mendoza, F. Donado, J.L. Carrillo, J. Phys. Chem. Solids 64, 2157 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    F. Martinez-López, M.A. Cabrerizo-Vílchez, R. Hidalgo-Álvarez, Physica A 291, 1 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    A.B. Chhabra, R.V. Jensen, K.R. Sreenivasan, Phys. Rev. A 40, 4593 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    M.J. Feigenbaum, M.H. Jensen, I. Procaccia, Phys. Rev. Lett. 57, 1503 (1986)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    S.R. Elliot, Physics of Amorphous Materials (Longman, London, 1984)Google Scholar
  27. 27.
    C.A. Angell, J. Non-Cryst. Solids 131, 13 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    M. Carmen Miguel, R. Pastor-Satorras, Phys. Rev. E 59, 826 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    S. Melle, O.G. Calderon, M.A. Rubio, G.G. Fuller, Phys. Rev. E 68, 041503 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    S. Melle, O.G. Calderon, G.G. Fuller, M.A. Rubio, J. Colloid Interface Sci. 247, 200 (2002)CrossRefGoogle Scholar
  32. 32.
    C.A. Angell, J. Phys. Chem. Solids 49, 863 (1988)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E.M. de la Calleja Mora
    • 1
    • 2
    Email author
  • J. L. Carrillo
    • 2
  • M. E. Mendoza
    • 2
  • F. Donado
    • 3
  1. 1.Departamento de Física, UMJ-Facultad de CienciasUNAMQuerétaroMéxico
  2. 2.Instituto de FísicaUniversidad Autónoma de PueblaPueblaMéxico
  3. 3.Instituto de Ciencias Básicas e Ingeniería-AAMFUniversidad Autónoma del Estado de HidalgoPachucaMéxico

Personalised recommendations