Derivative-variable correlation reveals the structure of dynamical networks

Regular Article

Abstract

We propose a conceptually novel method of reconstructing the topology of dynamical networks. By examining the correlation between the variable of one node and the derivative of another node’s variable, we derive a simple matrix equation yielding the network adjacency matrix. Our assumptions are the possession of time series describing the network dynamics, and the precise knowledge of the internal interaction functions. Our method involves a tunable parameter, allowing for the reconstruction precision to be optimized within the constraints of given dynamical data. The method is illustrated on a simple example, and the dependence of the reconstruction precision on the dynamical properties of time series is discussed. Our theory is in principle applicable to any weighted or directed network whose interaction functions are known.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.S. Mikhailov, V. Calenbuhr, From Cells to Societies: Models of Complex Coherent Action (Springer, Berlin, 2006)Google Scholar
  2. 2.
    A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008)Google Scholar
  3. 3.
    L.F. Costa et al., Adv. Phys. 60, 329 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Levnajić, A. Pikovsky, Phys. Rev. E 82, 056202 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    Z. Levnajić, Phys. Rev. E 84, 016231 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    F. Geier, J. Timmer, C. Fleck, BMC Sys. Biol. 1, 11 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Hecker et al., Biosystems 96, 86 (2009)CrossRefGoogle Scholar
  8. 8.
    F. Emmert-Streib et al., Front. Genet. 3, 8 (2012)CrossRefGoogle Scholar
  9. 9.
    A. Tsonis, P. Roebber, Physica A 333, 497 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    J. Donges et al., Europhys. Lett. 87, 48007 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    E. Bullmore, O. Sporns, Natl. Rev. Neurosci. 10, 186 (2009)CrossRefGoogle Scholar
  12. 12.
    N. Eagle, A. Pentland, D. Lazer, Proc. Natl. Acad. Sci. USA 106, 15274 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    Z. Levnajić, A. Pikovsky, Phys. Rev. Lett. 107, 034101 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    B. Kralemann, A. Pikovsky, M. Rosenblum, Chaos 21, 025104 (2011) MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    L. Prignano, A. Díaz-Guilera, Phys. Rev. E 85, 036112 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    R. Autariello, R. Dzakpasu, F. Sorrentino, Phys. Rev. E 87, 012915 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    K. Blaha et al., Phys. Rev. E 84, 046201 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    L. Lü, T. Zhou, Physica A 390, 1150 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    S.G. Shandilya, M. Timme, New J. Phys. 13, 013004 (2011) CrossRefGoogle Scholar
  20. 20.
    S. Hempel et al., Phys. Rev. Lett. 107, 054101 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    S. Džeroski, L. Todorovski, Curr. Opin. Biotechnol. 19, 360 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Timme, Phys. Rev. Lett. 98, 224101 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    Q. Xia et al., New J. Phys. 13, 083002 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    D. Yu, M. Righero, Lj. Kocarev, Phys. Rev. Lett. 97, 188701 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    W. Wang, Phys. Rev. X 1, 021021 (2011) CrossRefGoogle Scholar
  26. 26.
    L. Prignano, Y. Moreno, A. Díaz-Guilera, Phys. Rev. E 86, 066116 (2012) ADSCrossRefGoogle Scholar
  27. 27.
    Y. Roudi, J. Hertz, Phys. Rev. Lett. 106, 048702 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    X. Xu, J. Zhang, M. Small, Proc. Natl. Acad. Sci. 105, 19601 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    L. Lacasa et al., Proc. Natl. Acad. Sci. 105, 4972 (2008) MathSciNetADSMATHCrossRefGoogle Scholar
  30. 30.
    R. Donner et al., Int. J. Bifur. Chaos 21, 1019 (2011) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    J. Ren et al., Phys. Rev. Lett. 104, 058701 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    S. Widder, J. Schicho, P. Schuster, J. Theor. Biol. 246, 395 (2007) MathSciNetCrossRefGoogle Scholar
  33. 33.
    D. Hansel, H. Sompolinsky, Phys. Rev. Lett. 71, 2710 (1993) ADSCrossRefGoogle Scholar
  34. 34.
    B. Pompe, J. Runge, Phys. Rev. E 83, 051122 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    Z. Levnajić, Sci. Rep. 2, 967 (2012)ADSGoogle Scholar
  36. 36.
    J.P. Hespanha, Linear Systems Theory (Princeton University Press, Princeton, 2009)Google Scholar
  37. 37.
    J.S. Simonoff, Smoothing Methods in Statistics (Springer, New York, 1996)Google Scholar
  38. 38.
    A. Arenas et al., Phys. Rep. 469, 93 (2008)MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    Z. Levnajić, A. Pikovsky, to appear Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Information Studies in Novo mestoNovo mestoSlovenia
  2. 2.School of Advanced Social Studies in Nova GoricaNova GoricaSlovenia

Personalised recommendations