Advertisement

Sparse connection density underlies the maximal functional difference between random and scale-free networks

  • Sheng-Jun WangEmail author
  • Zi-Gang Huang
  • Xin-Jian Xu
  • Ying-Hai Wang
Regular Article

Abstract

Sparse networks are ubiquitous in real networked complex systems. Besides being the consequence of the economic requirement, does the sparse feature have other role in the functioning of the networked systems? Here we study the effect of network connection density on the difference of computational performance of Hopfield attractor networks. Using computer simulation, we find that the stability of patterns on random networks and scale-free networks has the maximum difference with a specific sparse connection density. We also study the stability of partial patterns encoded by nodes of the largest degrees. The advantage of scale-free network’s partial pattern stability is also maximal on sparse network. Using the signal-to-noise-ratio analysis, we find that the non-monotonicity of the difference is induced by the competition between the distinction of degree distribution and the signal strength, and show that the density inducing maximal difference of computational performance is sparse.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    S.H. Strogatz, Nature 410, 268 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    J.J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    D. Golomb, D. Hansel, B. Shraiman, H. Sompolinsky, Phys. Rev. A 45, 3516 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    D. Hansel, G. Mato, C. Meunier, Phys. Rev. E 48, 3470 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    K. Kaneko, Phys. Rev. Lett. 65, 1391 (1990)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    S.Y. Kourtchatov, V.V. Likhanskii, A.P. Napartovich, F.T. Arecchi, A. Lapucci, Phys. Rev. A 52, 4089 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    P.C. Bressloff, Phys. Rev. E 60, 2160 (1999)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A. Komoda, R. Serneels, K.Y.M. Wong, M. Bouten, J. Phys. A 24, 743 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    B. Derrida, E. Gardner, A. Zippelius, Europhys. Lett. 4, 167 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    T. Aoyagi, K. Kitano, Phys. Rev. E 55, 7424 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    H. Sakaguchi, S. Shinomoto, Y. Kuramoto, Prog. Theor. Phys. 77, 1005 (1987)ADSCrossRefGoogle Scholar
  15. 15.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    D.J. Amit, Modeling Brain Functions (Cambridge University Press, Cambridge, 1989)Google Scholar
  17. 17.
    H. Oshima, T. Odagaki, Phys. Rev. E 76, 036114 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    D. Stauffer, A. Aharony, L. da Fontoura Costa, J. Adler, Eur. Phys. J. B 32, 395 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    I.P. Castillo, B. Wemmenhove, J.P.L. Hatchett, A.C.C. Coolen, N.S. Skantzos, T. Nikoletopoulos, J. Phys. A 37, 8789 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. 20.
    J.I. Perotti, F.A. Tamarit, S.A. Cannas, Physica A 371, 71 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Bar-Yam, I.R. Epstein, Proc. Natl. Acad. Sci. USA 101, 4341 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    S.J. Wang, A.C. Wu, Z.X. Wu, X.J. Xu, Y.H. Wang, Phys. Rev. E 75, 046113 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    P.N. McGraw, M. Menzinger, Phys. Rev. E 68, 047102 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    G. Weisbuch, Complex Systems Dynamics: An Introduction to Automata Networks (Addison-Wesley, Redwood City, 1991)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sheng-Jun Wang
    • 1
    Email author
  • Zi-Gang Huang
    • 2
  • Xin-Jian Xu
    • 3
  • Ying-Hai Wang
    • 2
  1. 1.Department of PhysicsShaanxi Normal UniversityXi’AnP.R. China
  2. 2.School of Physical Science and TechnologyLanzhou UniversityLanzhouP.R. China
  3. 3.Department of Mathematics, College of ScienceShanghai UniversityShanghaiP.R. China

Personalised recommendations