Rearrangement of martensitic variants in Ni2MnGa studied with the phase-field method

  • Christian Mennerich
  • Frank Wendler
  • Marcus Jainta
  • Britta Nestler
Regular Article
Part of the following topical collections:
  1. Topical issue: New Trends in Magnetism and Magnetic Materials

Abstract

A phase-field model is introduced to simulate the magnetic shape memory effect, i.e. the solid-state rearrangement of the boundaries of a martensitic microstructure using an external magnetic field, in the shape memory material Ni2MnGa. The model is derived from an existing phase-field model that has proven well in several applications in materials science, based on the interpolation of free energies. The micromagnetic and elastic energy contributions entering the constitutive free energy functional are given, and the coupled kinetic equations of motion for the phase fields that describe the microstructure geometry, the spontaneous magnetization and the elastic displacement field are derived from the principle of minimization of free energy. The concept of representative volume elements is applied for the microstructure simulations carried out to analyze the material behavior, and the relevant boundary conditions are discussed. Stress vs. strain and strain vs. applied magnetic field curves are shown for Ni2MnGa.

References

  1. 1.
    K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996) ADSCrossRefGoogle Scholar
  2. 2.
    P. Entel, V.D. Buchelnikov, M.E. Gruner, A. Hucht, V.V. Khovailo, S.K. Nayak, A.T. Zayak, Mater. Sci. Forum 583, 21 (2008)CrossRefGoogle Scholar
  3. 3.
    S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley, Appl. Phys. Lett. 77, 886 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002) ADSCrossRefGoogle Scholar
  5. 5.
    M.L. Richard, J. Feuchtwanger, S.M. Allen, R.C. O’Handley, P. Lázpita, J.M. Barandiaran, Metall. Mater. Trans. A 38, 777 (2007)CrossRefGoogle Scholar
  6. 6.
    K. Bhattacharya, Microstructure of Martensite – Why it forms and how it gives rise to the Shape-Memory Effect (Oxford University Press, New York, 2003)Google Scholar
  7. 7.
    J. Slutsker, A.L. Roytburd, J. Mech. Phys. Solids 47, 2299 (1999) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    J. Slutsker, A.L. Roytburd, J. Mech. Phys. Solids 47, 2331 (1999) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    J. Slutsker, A.L. Roytburd, J. Mech. Phys. Solids 49, 1795 (2001) MATHCrossRefGoogle Scholar
  10. 10.
    Y. Wang, A.G. Khachaturyan, Mater. Sci. Eng. A 438, 55 (2006)CrossRefGoogle Scholar
  11. 11.
    V.I. Levitas, D.-W. Lee, D.L. Preston, Int. J. Plast. 26, 395 (2010)MATHCrossRefGoogle Scholar
  12. 12.
    J. Kundin, D. Raabe, H. Emmerich, J. Mech. Phys. Solids 59, 2082 (2011) MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    J.X. Zhang, L.Q. Chen, Phil. Mag. Lett. 85, 531 (2005)ADSGoogle Scholar
  14. 14.
    Y.M. Jin, Acta. Mater. 57, 2488 (2009) CrossRefGoogle Scholar
  15. 15.
    P.P. Wu, X.Q. Ma, J.X. Zhang, L.Q. Chen, J. Appl. Phys. 104, 073906 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    P.P. Wu, X.Q. Ma, J.X. Zhang, L.Q. Chen, Phil. Mag. 91, 2112 (2011) ADSGoogle Scholar
  17. 17.
    W.F. Brown Jr., Micromagnetics (Interscience Publisher, New York, 1963)Google Scholar
  18. 18.
    B. Nestler, H. Garcke, B. Stinner, Phys. Rev. E 71, 041609 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals, 2nd edn. (Cambridge University Press, Cambridge, 1993)Google Scholar
  20. 20.
    C. Mennerich, F. Wendler, M. Jainta, B. Nestler, Arch. Mech. 63, 1845 (2011) MathSciNetGoogle Scholar
  21. 21.
    H. Garcke, B. Nestler, B. Stoth, Physica D 115, 87 (1998)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    A. Hubert, R. Schäfer, Magnetic Domains (Springer, 1998)Google Scholar
  23. 23.
    J.E. Miltat, M.J. Donahue, Numerical micromagnetics: Finite difference methods, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller, S. Parkin (John Wiley and Sons Ltd., New York, 2007)Google Scholar
  24. 24.
    O. Heczko, J. Magn. Magn. Mater. 290, 846 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    J.D. Jackson, Classical Electrodynamics (John Wiley and Sons, New York, 1999)Google Scholar
  26. 26.
    H. Kronmüller, General micromagnetic theory, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller, S. Parkin (John Wiley and Sons Ltd., New York, 2007)Google Scholar
  27. 27.
    I. Cimrák, Arch. Comput. Methods Eng. 15, 277 (2008)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    D. Lewis, N. Nigam, J. Comput. Appl. Math. 151, 141 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    N. Moleans, B. Blanpain, P. Wollants, Calphad 32, 268 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Nemat-Nasser, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier Ltd, 1998)Google Scholar
  31. 31.
    A.G. Khachaturyan, Theory of Structural Transformations in Solids (Wiley, New York, 1983)Google Scholar
  32. 32.
    R. Tickle, R.D. James, J. Magn. Magn. Mater. 195, 627 (1999) ADSCrossRefGoogle Scholar
  33. 33.
    J.X. Zhang, L.Q. Chen, Acta. Mater. 53, 2845 (2005) CrossRefGoogle Scholar
  34. 34.
    L.J. Li, J.Y. Li, Y.C. Shu, H.Z. Chen, J.H. Yen, Appl. Phys. Lett. 92, 172504 (2008) ADSCrossRefGoogle Scholar
  35. 35.
    O. Heczko, K. Ullakko, IEEE Trans. Magn. 37, 2672 (2001) ADSCrossRefGoogle Scholar
  36. 36.
    L. Straka, N. Lanska, K. Ullakko, A. Sozinov, Appl. Phys. Lett. 96, 131903 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    D. Kellis, A. Smith, K. Ullakko, P. Müllner, J. Cryst. Growth 359, 64 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    O. Heczko, J. Magn. Magn. Mater. 290, 787 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    L. Straka, O. Heczko, H. Hänninen, Acta Mater. 56, 5492 (2008) CrossRefGoogle Scholar
  40. 40.
    A. Choudhury, B. Nestler, Phys. Rev. E 85, 021602 (2012) ADSCrossRefGoogle Scholar
  41. 41.
    E. Faran, D. Shilo, Appl. Phys. Lett. 100, 151901 (2012) ADSCrossRefGoogle Scholar
  42. 42.
    B. Kiefer, D.C. Lagoudas, Modelling of Magnetic SMAs, Shape Memory Alloys (Springer, 2008), pp. 325–393Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian Mennerich
    • 1
  • Frank Wendler
    • 1
  • Marcus Jainta
    • 1
  • Britta Nestler
    • 2
  1. 1.Karlsruhe University of Applied Sciences, Institute of Materials and Processes (IMP)KarlsruheGermany
  2. 2.Karlsruhe Institute of Technology (KIT), Institute of Applied Materials - Reliability of Components and Systems (IAM-ZBS)KarlsruheGermany

Personalised recommendations