Advertisement

Modification of domain-wall propagation in Co nanowires via Ga+ irradiation

  • Luis Serrano-Ramón
  • Amalio Fernández-Pacheco
  • Manuel Ricardo Ibarra
  • Dorothée Petit
  • Russell P. Cowburn
  • Tolek Tyliszczak
  • José MaríaTeresa De Teresa
Regular Article
Part of the following topical collections:
  1. Topical issue: New Trends in Magnetism and Magnetic Materials

Abstract

The propagation of domain walls in polycrystalline Co nanowires grown by focused-electron-beam-induced deposition is explored. We have found that Ga+ irradiation via focused ion beam is a suitable method to modify the propagation field of domain walls in magnetic conduits. Magneto-optical Kerr effect measurements show that global Ga+ irradiation of the nanowires increases the domain-wall propagation field. Additionally, we have observed by means of scanning transmission X-ray microscopy that it is possible to produce substantial domain-wall pinning via local Ga+ irradiation of a narrow region of the nanowire. In both cases, Ga+ doses of the order of 1016 ions/cm2 are required to produce such effects. These results pave the way for the controlled manipulation of domain walls in Co nanowires via Ga+ irradiation.

Keywords

Domain Wall Perpendicular Magnetic Anisotropy Magnetic Domain Wall Domain Wall Propagation Kerr Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Chappert, A. Fert, F.N. Van Dau, Nat. Mater. 6, 813 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    I.R. McFadyen, E.E. Fullerton, M.J. Carey, MRS Bulletin 31, 379 (2006)CrossRefGoogle Scholar
  3. 3.
    D.L. Graham, H.A. Ferreira, P.P. Freitas, Trends Biotechnol. 22, 428 (2004)CrossRefGoogle Scholar
  4. 4.
    D.A. Alwood, G. Xiong, C.C. Faulkner, D. Atkinson, D. Petit, R.P. Cowburn, Science 309, 1688 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    M. Donolato et al., Adv. Mater. 22, 2706 (2010)CrossRefGoogle Scholar
  7. 7.
    R.P. Cowburn, D.A. Allwood, G. Xiong, M.D. Cook, J. Appl. Phys. 91, 6949 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    G. Malinowski, O. Boulle, M. Kläui, J. Phys. D 44, 384005 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    A. Brataas, A.D. Kent, H. Ohno, Nat. Mater. 11, 372 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kläui, C.A.F. Vaz, J.A.C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, J. Appl. Phys. 93, 7885 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    E.R. Lewis et al., Nat. Mater. 9, 980 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    L. O’Brien et al., Phys. Rev. Lett. 106, 087204 (2011)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    A.J. Schellekens, A. Van den Brink, J.H. Franken, H.J.M. Swagten, B. Koopmans, Nat. Commun. 3, 847 (2012)CrossRefGoogle Scholar
  15. 15.
    D. Chiba et al., Nat. Commun. 3, 888 (2012)CrossRefGoogle Scholar
  16. 16.
    J.H. Franken, M. Hoeijmakers, R. Lavrijsen, H.J.M. Swagten, J. Phys.: Condens. Matter 24, 024216 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    C. Chappert et al., Science 280, 1919 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    T. Gerhardt, A. Drews, G. Meier, J. Phys.: Condens. Matter 24, 024208 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    J. Fassbender, J. McCord, J. Magn. Magn. Mater. 320, 579 (2008)CrossRefGoogle Scholar
  20. 20.
    D. Weller, J.E.E. Baglin, A.J. Kellock, K.A. Hannibal, M.F. Toney, J. Appl. Phys. 87, 5768 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    C. Vieu, J. Gierak, H. Launois, T. Aign, P. Meyer, J.P. Jamet, J. Ferre, C. Chappert, T. Devolder, V. Mathet, H. Bernas, J. Appl. Phys. 91, 3103 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    M. Cormier et al., J. Phys. D 44, 215002 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    D. Ozkaya, R.M. Langford, W.L. Chan, A.K. Petford-Long, J. Appl. Phys. 91, 9937 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    J. Barzola-Quiquia, S. Dusari, G. Bridoux, F. Bern, A. Molle, P. Esquinazi, Nanotechnology 21, 145306 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    T.T. Suzuki, H. Kuwahara, Y. Yamauch, Surf. Sci. 605, 1197 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    J.H. Franken, H.J.M. Swagten, B. Koopmans, Nature Nanotechnol. 7, 499 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Nanofabrication using focused ion and electron beams: principles and applications edited by P.E. Russell, I. Utke, S. Moshkalev (Oxford University Press, New York, 2012)Google Scholar
  28. 28.
    D.A. Alwood, G. Xiong, M.D. Cooke, R.P. Cowburn, J. Phys. D 36, 2175 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    A.L.D. Kilcoyne et al., J. Synchr. Radiat. 10, 125 (2003)CrossRefGoogle Scholar
  30. 30.
    I. Utke, P. Hoffmann, R. Berger, L. Scandella, Appl. Phys. Lett. 80, 4792 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, J. Phys. D 42, 055005 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    L. Serrano-Ramón, R. Córdoba, L.A. Rodríguez, C. Magén, E. Snoeck, C. Gatel, I. Serrano, M.R. Ibarra, J.M. De Teresa, ACS Nano 5, 7781 (2011)CrossRefGoogle Scholar
  33. 33.
    E. Nikulina, O. Idigoras, P. Vavassori, A. Chuvilin, A. Berger, Appl. Phys. Lett. 100, 142401 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    D.A. Allwood, N. Vernier, Gang Xiong, M.D. Cooke, D. Atkinson, C.C. Faulkner, R.P. Cowburn, Appl. Phys. Lett. 81, 4005 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn, Appl. Phys. Lett. 94, 192509 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    M.-Y. Im, L. Bocklage, P. Fischer, G. Meier, Phys. Rev. Lett. 102, 147204 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    A. Fernández-Pacheco et al., Nanotechnology 23, 105703 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    L. Serrano-Ramón et al., to be publishedGoogle Scholar
  39. 39.
    Z.Q. Qiu, S.D. Bader, J. Magn. Magn. Mater. 200, 664 (1999)ADSCrossRefGoogle Scholar
  40. 40.
    L. van Kouwen, A. Botman, C.W. Hagen, Nano Lett. 9, 2149 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    A. Fernández-Pacheco, J.M. De Teresa, A. Szkudlarek, R. Córdoba, M.R. Ibarra, D. Petit, L. O’Brien, H.T. Zeng, E.R. Lewis, D.E. Read, R.P. Cowburn, Nanotechnology 20, 475704 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    D. McGrouther, J.N. Chapman, Appl. Phys. Lett. 87, 022507 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    E. Arac, D.M. Burn, D.S. Eastwood, T.P.A. Hase, D. Atkinson, J. Appl. Phys. 111, 044324 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luis Serrano-Ramón
    • 1
    • 2
  • Amalio Fernández-Pacheco
    • 3
  • Manuel Ricardo Ibarra
    • 2
    • 4
  • Dorothée Petit
    • 3
  • Russell P. Cowburn
    • 3
  • Tolek Tyliszczak
    • 5
  • José MaríaTeresa De Teresa
    • 1
    • 2
    • 4
  1. 1.Instituto de Ciencia de Materiales de Aragón, Facultad de Ciencias, Universidad de Zaragoza-CSICZaragozaSpain
  2. 2.Departamento de Física de la Materia Condensada, Universidad de ZaragozaZaragozaSpain
  3. 3.TFM Group, Cavendish Laboratory, University of CambridgeCambridgeUK
  4. 4.Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), Universidad de ZaragozaZaragozaSpain
  5. 5.Advanced Light Source, Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations