Advertisement

Long-wavelength spin-effective actions for the infinite U Hubbard model

  • Fábio L. BraghinEmail author
Regular Article
  • 95 Downloads

Abstract

The derivation of spin-effective actions is envisaged for the Hubbard model with infinite Coulomb repulsion for a very low concentration of holes with a slave fermion representation for electronic operators. For that, spinless charge variables (vacancies or holes) are integrated out and the resulting effective action at finite temperature is expanded up to the fourth order in the hopping term as proposed in reference [F.L. Braghin, A. Ferraz, E.A. Kochetov, Phys. Rev. B 78, 115109 (2008)] and, in a square lattice, the fourth order term is shown to have the structure of an extended gauge invariant J-Q model for localized spins. Two cases for which the resulting model is non trivial are analysed and they correspond basically to (1) holes hopping between two sub-lattices and (2) a time-dependent solution for the spinon variables in the square lattice. Whereas the first of these cases yields, at the leading order, an effective antiferromagnetic Heisenberg coupling for localized spins and the second one may lead either to ferromagnetic or antiferromagnetic effective coupling. In the second case, the ordering should appear rather in finite size domains and, although charge variables were integrated out, a subtle imbalance between charge degrees of freedom and spins should be at work.

Keywords

Solid State and Materials 

References

  1. 1.
    J. Hubbard, Proc. Roy. Soc. London A 276, 238 (1963)ADSCrossRefGoogle Scholar
  2. 2.
    H. Tasaki, Eur. Phys. J. B 64, 365 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    H. Tasaki, Prog. Theor. Phys. 99, 489 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    P. Fazekas, Philosophical Magazine Part B 76, 797 (1997)CrossRefGoogle Scholar
  5. 5.
    P. Fazekas, Lecture Notes on Electronic Correlation and Magnetism, Series in Modern Condensed Matter Physics (World Scientific, Singapore, 1999), Vol. 5Google Scholar
  6. 6.
    V. Bach, E.H. Lieb, M.V. Travaglia, Rev. Math. Phys. 18, 519 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    E.H. Lieb, The Hubbard Model: Some Rigorous Results and Open Problems, Advances in Dynamical Systems and Quantum Physics (World Scientific, Singapore, 1993)Google Scholar
  8. 8.
    A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-Verlag, New York, 1998)Google Scholar
  9. 9.
    E. Fradkin, Field theories of Condensed Matter Systems (Perseus Books, 1991)Google Scholar
  10. 10.
    D. Jaksch, P. Zoller, Ann. Phys. 315, 52 (2005)ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    J. von Stecher, E. Demler, M.D. Lukin, A.M. Rey, New J. Phys. 12, 055009 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    D. Yoshioka, J. Phys. Soc. Jpn 58, 1516 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    R. Kishore, A.K. Mishra, Physica B 403, 1344 (2008)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    A.K. Mishra, R. Kishore, Physica B 404, 3257 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Mishra, R. Kishore, J. Phys.: Conf. Ser. 273, 012153 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    S. Östlund, M. Granath, Phys. Rev. Lett. 96, 066404 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    I. Ichinose, T. Matsui, Phys. Rev. Lett. 86, 942 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    I. Ichinose, T. Matsui, M. Onoda, Phys. Rev. B 64, 104516 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    C. Nayak, Phys. Rev. Lett. 85, 178 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    C. Kübert, A. Muramatsu, arXiv:cond-mat/9505105Google Scholar
  22. 22.
    D. Boies, F.A. Jackson, A.-M.S. Tremblay, Int. J. Mod. Phys. B 9, 1001 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    H. Matsukawa, H. Fukuyama, J. Phys. Soc. Jpn 61, 1882 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    J. Kokalj, P. Prelovsek, Eur. Phys. J. B 63, 431 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    T. Koretsune, M. Ogata, Physica B 378-380, 323 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    F.L. Braghin, A. Ferraz, E.A. Kochetov, Phys. Rev. B 78, 115109 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    F.L. Braghin, Physica B 404, 3293 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A.N. Kocharian, G.W. Fernando, K. Palandge, J.W. Davenport, Ultramicroscopy 109, 1066 (2009)CrossRefGoogle Scholar
  29. 29.
    Y.-F. Wang, C.-D. Gong, Z.D. Wang, Phys. Rev. Lett. 100, 037202 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    Sheng-Hao Li, Qian-Qian Shi, Huan-Qiang Zhou, arXiv: 1001.3343Google Scholar
  31. 31.
    A. Muramatsu, R. Zeyher, Physica B 165-166, 989 (1990)CrossRefGoogle Scholar
  32. 32.
    A. Muramatsu, R. Zeyher, Nucl. Phys. B 346, 387 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    N. Dupuis, S. Pairault, Int. J. Mod. Phys. B 14, 2529 (2000)ADSGoogle Scholar
  34. 34.
    A.W. Sandvik, Phys. Rev. Lett. 98, 227202 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    A. Ferraz, E. Kochetov, M. Mierzejewski, Phys. Rev. B 73, 064516 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    A.N. Kocharian, G.W. Fernando, K. Palandage, J.W. Davenport, Phys. Rev. B 78, 075431 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    M. Cuoco, J. Ranninger, Phys. Rev. B 70, 104509 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    A.G. Abanov, P.B. Wiegmann, Nucl. Phys. 570, 685 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Y. Nagaoka, Phys. Rev. 147, 392 (1966)ADSCrossRefGoogle Scholar
  40. 40.
    J. Thouless, Proc. Phys. Soc. London 86, 893 (1965)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    D.J. Klein, Phys. Rev. B 8, 3452 (1973)ADSCrossRefGoogle Scholar
  42. 42.
    G. Beni, T. Holstein, P. Pincus, Phys. Rev. B 8, 312 (1973)ADSCrossRefGoogle Scholar
  43. 43.
    J.B. Sokoloff, Phys. Rev. B 2, 779 (1970)ADSCrossRefGoogle Scholar
  44. 44.
    K.I. Kugel, A.L. Rakhmanov, A.O. Sboychakov, Physica B 403, 1616 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    E. Kochetov, A. Ferraz, R.T. Pepino, Phys. Rev. B 79, 115135 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    J.O. Haerter, B.S. Shastry, Phys. Rev. Lett. 95, 087202 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Instituto de Física, Universidad Federal de GoiásGoiâniaBrazil
  2. 2.International Institute of Physics, Universidad Federal Rio Grande do NorteNatalBrazil

Personalised recommendations