Statistical properties of swarms of self-propelled particles with repulsions across the order-disorder transition

Regular Article

Abstract

We study dynamic self-organisation and order-disorder transitions in a two-dimensional system of self-propelled particles. Our model is a variation of the Vicsek model, where particles align the motion to their neighbours but repel each other at short distances. We use computer simulations to measure the orientational order parameter for particle velocities as a function of intensity of internal noise or particle density. We show that in addition to the transition to an ordered state on increasing the particle density, as reported previously, there exists a transition into a disordered phase at the higher densities, which can be attributed to the destructive action of the repulsions. We demonstrate that the transition into the ordered phase is accompanied by the onset of algebraic behaviour of the two-point velocity correlation function and by a non-monotonous variation of the velocity relaxation time. The critical exponent for the decay of the velocity correlation function in the ordered phase depends on particle concentration at low densities but assumes a universal value in more dense systems.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.K. Parrish, L. Edelstein-Keshet, Science 284, 99 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    D. Weihs, Nature 241, 290 (1973) ADSCrossRefGoogle Scholar
  3. 3.
    J.K. Parrish, S.V. Viscido, D. Grunbaum, Biol. Bull. 202, 296 (2002) CrossRefGoogle Scholar
  4. 4.
    S.J. Hall, C.S. Wardle, D.N. MacLennan, Marine Biol. 91, 143 (1986)CrossRefGoogle Scholar
  5. 5.
    E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirók, T. Vicsek, Nature 368, 46 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    H. Levine, W. Reynolds, Phys. Rev. Lett. 66, 2400 (1991) ADSCrossRefGoogle Scholar
  7. 7.
    J.T. Bonner, Proc. Natl. Acad. Sci. USA 95, 9355 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    R.P. Larkin, B.A. Frase, J. Comp. Psychol. 102, 90 (1988)CrossRefGoogle Scholar
  9. 9.
    T.C. Schneirla, Am. Mus. Novit. 1253, 1 (1944)Google Scholar
  10. 10.
    A. Czirók, E. Ben-Jacob, I. Cohen, T. Vicsek, Phys. Rev. E 54, 1791 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    W.J. Rappel, A. Nicol, A. Sarkissian, H. Levine, Phys. Rev. Lett. 83, 1247 (1999) ADSCrossRefGoogle Scholar
  12. 12.
    G. Beni, J. Wang, “Swarm Intelligence in Cellular Robotic Systems”, in Proceedings of the NATO Advanced Workshop on Robots and Biological Systems Tuscany, 1989 Google Scholar
  13. 13.
    J. Toner, Y. Tu, S. Ramaswami, Ann. Phys. 318, 170 (2005) ADSMATHCrossRefGoogle Scholar
  14. 14.
    S. Ramaswami, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. 202, 1 (2012)Google Scholar
  16. 16.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995) ADSCrossRefGoogle Scholar
  18. 18.
    C. Huepe, M. Aldana, Physica A 387, 2809 (2008) ADSCrossRefGoogle Scholar
  19. 19.
    H. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    C. Huepe, M. Aldana, Phys. Rev. Lett. 92, 168701 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    H. Chaté, F. Ginelli, G. Grégoire, F. Raynaud, Phys. Rev. E 77, 046113 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Eur. Phys. J. B 64, 451 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    G. Baglietto, E.V. Albano, Phys. Rev. E 78, 21125 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    G. Baglietto, E.V. Albano, Phys. Rev. E 80, 050103(R) (2009) ADSCrossRefGoogle Scholar
  25. 25.
    I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    B.M. Tian, H.X. Yang, W. Li, W.X. Wang, B.H. Wang, T. Zhou, Phys. Rev. E 79, 052102 (2009) ADSCrossRefGoogle Scholar
  27. 27.
    J. Toner, Y. Tu, Phys. Rev. Lett. 75, 4326 (1995) ADSCrossRefGoogle Scholar
  28. 28.
    J. Toner, Y. Tu, Phys. Rev. E 58, 4828 (1998) MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    A. Czirók, H.E. Stanley, T. Vicsek, J. Phys. A 30, 1375 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    A. Czirók, A.L. Barabasi, T. Vicsek, Phys. Rev. Lett. 82, 209 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    F. Peruani, J. Starruß, V. Jakovlevic, L. Søgaard-Andersen, A. Deutsch, M. Bär, Phys. Rev. Lett. 108, 098102 (2012) ADSCrossRefGoogle Scholar
  32. 32.
    J. Deseigne, O. Dauchot, H. Chaté, Phys. Rev. Lett. 105, 098001 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    M. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R. Aditi Simha, arXiv:1207.2929[cond-mat.soft] (2012)Google Scholar
  34. 34.
    I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Nature 433, 513 (2005) ADSCrossRefGoogle Scholar
  35. 35.
    M. Romenskyy, V. Lobaskin, “Dynamic phase transition in a system of self-propelled particles”, in Proceedings of the XIII Int. Conf. on the Simulation and Synthesis of Living Systems. Artificial Life 13, edited by C. Adami, D.M. Bryson, C. Ofria, R.T. Pennock, Michigan State University (The MIT Press, Cambridge, Massachusetts, 2012), pp. 574–575Google Scholar
  36. 36.
    C.K. Hemelrijk, H. Hildenbrandt, Ethology 114, 245–254 (2008)CrossRefGoogle Scholar
  37. 37.
    E. Hensor, I. Couzin, R. James, J. Krause, OIKOS 110, 344 (2005) CrossRefGoogle Scholar
  38. 38.
    H. Dong, Y. Zhao, J. Wu, S. Gao, Physica A 391, 2145−2153 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    R. Freeman, D. Biro, J. Navigation 62, 33 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    M. Nagy, I. Daruka, T. Vicsek, Physica A 373, 445 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    K. Binder, Z. Phys. B 43, 119 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    M. Ballerini et al., Proc. Natl. Acad. Sci. USA 105, 1232 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    F. Ginelli, H. Chaté, Phys. Rev. Lett. 105, 168103 (2010) ADSCrossRefGoogle Scholar
  44. 44.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C 6, 1181 (1973)ADSCrossRefGoogle Scholar
  45. 45.
    J.M. Kosterlitz, J. Phys. C 7, 1046 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    M.E. Fisher, Rep. Mod. Phys. 46, 597 (1974)ADSCrossRefGoogle Scholar
  47. 47.
    J.V. Jose, L.P. Kadanoff, S. Kirkpatrick, D.R. Nelson, Phys. Rev. B 16, 1217 (1977) ADSCrossRefGoogle Scholar
  48. 48.
    D. Frenkel, R. Eppenga, Phys. Rev. A 31, 1776 (1985) ADSCrossRefGoogle Scholar
  49. 49.
    N. Moussa, I. Tarras, M. Mazroui, Y. Boughaleb, Int. J. Mod. Phys. C 22, 661 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Physics, Complex and Adaptive Systems Lab, University College Dublin, BelfieldDublin 4Ireland

Personalised recommendations