Advertisement

Dynamics of vortices and drift waves: a point vortex model

  • Xavier Leoncini
  • Alberto Verga
Regular Article

Abstract

The complex interactions of localized vortices with waves are investigated using a model of point vortices in the presence of a transverse or longitudinal wave. This simple model shows a rich dynamical behavior including oscillations of a dipole, splitting and merging of two like-circulation vortices, and chaos. The analytical and numerical results of this model have been found to predict under certain conditions, the behavior of more complex systems, such as the vortices of the Charney-Hasegawa-Mima equation, where the presence of waves strongly affects the evolution of large coherent structures.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    N.J. Zabusky, J.C. McWilliams, Phys. Fluids 25, 2175 (1982)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    A. Hasegawa, C.G. Maclennan, Y. Kodama, Phys. Fluids 22, 2122 (1979)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    V. Zeitlin, “Nonlinear Dynamics of Rotating Shallow Water: Methods and Advances”, in Advances in Nonlinear Science and Complexity (Elsevier Science, Amsterdam, 2007), Vol. 2Google Scholar
  4. 4.
    A. Hasegawa, K. Mima, Phys. Rev. Lett. 39, 205 (1977)ADSCrossRefGoogle Scholar
  5. 5.
    P.H. Diamond, S.I. Itoh, K. Itoh, T.S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Kosterlitz, J.D. Thouless, J. Phys. C 6, 1181 (1973)ADSCrossRefGoogle Scholar
  7. 7.
    X. Leoncini, A. Verga, S. Ruffo, Phys. Rev. E 57, 6377 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    J.C. McWilliams, J. Fluid Mech. 146, 21 (1984)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    A. Provenzale, Annu. Rev. Fluid Mech. 31, 55 (1999)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    A. Bracco, J.C. McWilliams, A. Provenzale, G. Morante, J.B. Weiss, Phys. Fluids 12, 2931 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    G. Reznik, Izv. Atmos. Ocean. Phys. 46, 784 (2010)zbMATHCrossRefGoogle Scholar
  12. 12.
    F. Dupont, R.I. McLachlan, V. Zeitlin, Phys. Fluids 10, 3185 (1998)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    S.V. Annibaldi, G. Manfredi, R.O. Dendy, Phys. Plasmas 9, 791 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    X. Leoncini, O. Agullo, S. Benkadda, G.M. Zaslavsky, Phys. Rev. E 72, 026218 (2005)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    W. Horton, Phys. Rep. 192, 1 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    C. Ferro Fontán, A. Verga, Phys. Rev. E 52, 6717 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    W. Horton, Rev. Mod. Phys. 71, 735 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    W.H. Matthaeus, W.T. Stribling, D. Martinez, S. Oughton, D. Montgomery, Physica D 51, 531 (1991)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    L. Onsager, Nuovo Cimento, Suppl. 6, 279 (1949)MathSciNetCrossRefGoogle Scholar
  20. 20.
    O. Agullo, A. Verga, Phys. Rev. E 69, 056318 (2004)MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    F. Spineanu, M. Vlad, Phys. Plasmas 12, 112303 (2005)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    W. Horton, A. Hasegawa, Chaos 4, 227 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    J.G. Charney, Geofys. Publ. Oslo 17, 1 (1948)MathSciNetGoogle Scholar
  24. 24.
    J. Pedlosky, Geophysical Fluid Dynamics (Springer, Berlin, 1986)Google Scholar
  25. 25.
    M. Lessieur, Turbulence in fluids (Kluwer Academic, Dordrecht, 1990)Google Scholar
  26. 26.
    E. Kim, P.H. Diamond, Phys. Rev. Lett. 88, 225002 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    F. Spineanu, M. Vlad, Phys. Rev. Lett. 94, 235003 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    G.M. Reznik, J. Fluid Mech. 240, 405 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    M. Makino, K. Kamimura, T. Taniuty, J. Phys. Soc. Jpn 50, 980 (1981)ADSCrossRefGoogle Scholar
  30. 30.
    I.M. Lansky, T.M. O’Neil, D.A. Schecter, Phys. Rev. Lett. 79, 1479 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    E.N. Lorenz, Tellus 12, 364 (1960)ADSCrossRefGoogle Scholar
  32. 32.
    J.G. Charney, J. Atmos. Sci. 28, 1087 (1971)ADSCrossRefGoogle Scholar
  33. 33.
    O. Agullo, A.D. Verga, Phys. Rev. Lett. 78 2361 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    C. Sire, P.H. Chavanis, J. Sopik, Phys. Rev. E 84, 056317 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    M. Kono, W. Horton, Phys. Fluids B 3, 3255 (1991)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    C. Marchioro, M. Pulvirenti, “Mathematical Theory of Uncompressible Nonviscous Fluids”, in AppliedMathematical Science(Springer-Verlag, New York, 1994), Vol. 96Google Scholar
  37. 37.
    P.G. Saffman, Vortex Dynamics, Cambridge Monographs on Mechanics and Applied Mathematics (Cambridge University Press, Cambridge, 1995)Google Scholar
  38. 38.
    G.M. Zaslavsky, The Physics of Chaos in Hamiltonian Systems, 2nd edn. (Imperial College Press, London, 2007)Google Scholar
  39. 39.
    M. Paoletti, T. Solomon, Europhys. Lett. 69, 819 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    M. Paoletti, T. Solomon, Phys. Rev. E 72, 46204 (2005)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    P.H. Chavanis, Phys. Rev. E 58, R1199 (1998)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    P.H. Chavanis, Phys. Rev. E 64, 026309 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    D.A. Schecter, D.H.E. Dubin, Phys. Fluids 13, 1704 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    Y. Kiwamoto, K. Ito, A. Sanpei, A. Mohri, Phys. Rev. Lett. 85, 3173 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Aix-Marseille Université, CPT-CNRS UMR 6207Marseille Cedex 9France
  2. 2.Aix-Marseille Université, IM2NP-CNRS UMR 6242MarseilleFrance

Personalised recommendations