Hybrid Bio-Mag-MEMS combining magnetophoresis and dielectrophoresis

  • Guillaume Blaire
  • Alain Masse
  • Luiz Fernando Zanini
  • Victor Gaude
  • Sarah Delshadi
  • Thibault Honegger
  • David Peyrade
  • Marianne Weidenhaupt
  • Frédéric Dumas-Bouchiat
  • Franz Bruckert
  • Orphée Cugat
  • Gilbert Reyne
Regular Article
Part of the following topical collections:
  1. Topical issue: New Trends in Magnetism and Magnetic Materials

Abstract

The design of a new hybrid magnetic MEMS for biology (Bio-Mag-MEMS) is presented. It combines magnetophoresis, dielectrophoresis and microfluidics. These phenomena are used to sort magnetically tagged and non-tagged objects. Magnetic objects are trapped by the use of high gradient magnetophoresis. Thanks to dielectrophoresis these objects, once trapped, can be successfully released in a buffer. Efficient sorting is performed in this hybrid Bio-Mag-MEMS by using magnetic beads. A high sorting efficiency is demonstrated. Magnetic, Stokes and dielectrophoretic forces in the microfluidic channel are simulated with both analytical tools and the finite element method (FEM). The trajectories of magnetically tagged objects are simulated. Finally the fabrication and optimization of this device are detailed.

References

  1. 1.
    A. Jordan et al., J. Magn. Magn. Mater. 201, 413 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    C. Plank et al., Adv. Drug Deliv. Rev. 63, 1300 (2011)CrossRefGoogle Scholar
  3. 3.
    O. Osman et al., Biomed. Microdevices 14, 947 (2012)CrossRefGoogle Scholar
  4. 4.
    N. Pamme, Lab Chip 6, 24 (2006)CrossRefGoogle Scholar
  5. 5.
    M. Zborowski et al., Anal. Chem. 83, 8050 (2011)CrossRefGoogle Scholar
  6. 6.
    D. Robert et al., Lab Chip 11, 1902 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Tseng, Nano Lett. 9, 3053 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    K. Hoshino et al., Lab Chip 11, 3449 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Fulcrand et al., Sens. Actuators B 160, 1520 (2011)CrossRefGoogle Scholar
  10. 10.
    O. Cugat et al., IEEE Trans. Magn. 39, 3607 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kustov et al., J. Appl. Phys. 108, 063914 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    F. Dumas-Bouchiat et al., Appl. Phys. Lett. 96, 102511 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    L.F. Zanini et al., J. Appl. Phys. 111, (2012)Google Scholar
  14. 14.
    L.F. Zanini et al., Appl. Phys. Lett. 99, 232504 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    N.M. Dempsey et al., Appl. Phys. Lett. 90, 092509 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    T. Honeger et al., Micro Nanosystems 2, 239 (2010)CrossRefGoogle Scholar
  17. 17.
    T. Honeger et al., Microelectron. Eng. 86, 1401 (2009)CrossRefGoogle Scholar
  18. 18.
    S. Chigirinsky et al., Rev. Adv. Mater. Sci. 20, 85 (2009)Google Scholar
  19. 19.
    P. Kauffmann et al., IEEE Trans. Magn. 46, 3293 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    T. Honeger et al., Appl. Phys. Lett. 98, 181906 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    C. Mikkelsen et al., J. Magn. Magn. Mater. 293, 578 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guillaume Blaire
    • 1
    • 2
  • Alain Masse
    • 1
  • Luiz Fernando Zanini
    • 1
    • 3
  • Victor Gaude
    • 1
  • Sarah Delshadi
    • 1
  • Thibault Honegger
    • 4
  • David Peyrade
    • 4
  • Marianne Weidenhaupt
    • 2
  • Frédéric Dumas-Bouchiat
    • 3
  • Franz Bruckert
    • 2
  • Orphée Cugat
    • 1
  • Gilbert Reyne
    • 1
  1. 1.G2Elab, CNRS UMR 5269 and Grenoble UniversitySt. Martin d’HèresFrance
  2. 2.LMGP, CNRS UMR 5628 and Grenoble-INPGrenobleFrance
  3. 3.Néel Institute, CNRS UPR 2940 and Joseph Fourier UniversityGrenoble Cedex 9France
  4. 4.LTM, CNRS UMR 5129 and CEA GrenobleGrenobleFrance

Personalised recommendations