Formation of bcc-Ni thin film on GaAs(100) substrate and phase transformation from bcc to fcc

  • Mitsuru Ohtake
  • Masaaki Futamoto
  • Nobuyuki Inaba
Regular Article
Part of the following topical collections:
  1. Topical issue: New Trends in Magnetism and Magnetic Materials


Ni thin films are prepared on GaAs(100) single-crystal substrates at room temperature by using an ultra-high vacuum radio-frequency magnetron sputtering system. The growth behavior and the crystallographic properties are studied by in-situ refection highenergy electron diffraction and pole-figure X-ray diffraction. In an early stage of film growth, a metastable bcc Ni(100) single-crystal film is formed on GaAs(100) substrate, where the bcc structure is stabilized through hetero-epitaxial growth. With increasing the film thickness, fcc crystals coexist with the bcc(100) crystal. High-resolution cross-sectional transmission electron microscopy shows that the film consists of a mixture of bcc and fcc crystals and that a large number of planar faults exist parallel to the fcc(111) close-packed plane. The results indicate that the bcc structure starts to transform into fcc structure through atomic displacement parallel to the bcc{110} close-packed planes.


GaAs GaAs Substrate Planar Fault Incident Electron Beam RHEED Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    X.-G. Zhang, W.H. Butler, Phys. Rev. B 70, 172407 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, K. Ando, Appl. Phys. Lett. 89, 042505 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    J.P. Velev, K.D. Belashchenko, D.A. Stewart, M. van Schilfgaarde, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. Lett. 95, 216601 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    W. Tian, H.P. Sun, X.Q. Pan, J.H. Yu, M. Yeadon, C.B. Boothroyd, Y.P. Feng, R.A. Lukaszew, R. Clarke, Appl. Phys. Lett. 86, 131915 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    T. Tanaka, T. Nishiyama, K. Shikada, M. Ohtake, F. Kirino, M. Futamoto, J. Magn. Soc. Jpn 34, 21 (2010) CrossRefGoogle Scholar
  6. 6.
    M. Ohtake, T. Tanaka, F. Kirino, M. Futamoto, J. Phys.: Conf. Ser. 200, 072072 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    J. Higuchi, M. Ohtake, Y. Sato, T. Nishiyama, M. Futamoto, Jpn J. Appl. Phys. 50, 063001 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    M. Ohtake, Y. Sato, J. Higuchi, M. Futamoto, J. Phys.: Conf. Ser. 266, 012122 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    M. Ohtake, Y. Sato, J. Higuchi, T. Tanaka, F. Kirino, M. Futamoto, Jpn J. Appl. Phys. 50, 103001 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    C.S. Tian, D. Qian, D. Wu, R.H. He, Y.Z. Wu, W.X. Tang, L.F. Yin, Y.S. Shi, G.S. Dong, X.F. Jin, X.M. Jiang, F.Q. Liu, H.J. Qian, K. Sun, L.M. Wang, G. Rossi, Z.Q. Qiu, J. Shi, Phys. Rev. Lett. 94, 137210 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    M. Ohtake, Y. Nonaka, M. Futamoto, IEEE Trans. Magn. 48, 1589 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    G. Wasserman, Arch. Eisenhuettenwes 16, 647 (1933) Google Scholar
  13. 13.
    Z. Nishiyama, Sci. Rep. Tohoku Univ. 23, 638 (1934) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mitsuru Ohtake
    • 1
  • Masaaki Futamoto
    • 1
  • Nobuyuki Inaba
    • 2
  1. 1.Faculty of Science and Engineering, Chuo UniversityTokyoJapan
  2. 2.Department of Electrical and Electronic EngineeringYamagata UniversityYonezawaJapan

Personalised recommendations