Two-color laser manipulation of single organic molecules based on nonlinear optical response

  • Tetsuhiro Kudo
  • Hajime Ishihara
Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials


We theoretically propose two-color laser manipulation with greatly improved efficiency to mechanically manipulate single organic molecules. The present method is based on the nonlinear resonant laser manipulation proposed in a recent study. In the first part, we describe a method to trap single organic molecules that can be more effective than ever before utilizing two-color beams. In the second part, we demonstrate the possibility to selectively “pull” single organic molecules with a particular type of electronic-level scheme by using single-side illumination of traveling light.


Standing Wave Radiation Force Population Inversion Gradient Force Optical Tweezer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)ADSCrossRefGoogle Scholar
  2. 2.
    A. Ashkin et al., Opt. Lett. 11, 288 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    A.H.J. Yang et al., Nature 457, 71 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    F.M. Fazal, S.M. Block, Nature Photonics 5, 318 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    S. Ito et al., J. Am. Chem. Soc. 133, 14472 (2011)CrossRefGoogle Scholar
  6. 6.
    M.A. Osborne et al., J. Phys. Chem. B 102, 3160 (1998)CrossRefGoogle Scholar
  7. 7.
    G. Chirico, C. Fumagalli, G. Baldini, J. Phys. Chem. B 106, 2508 (2002)CrossRefGoogle Scholar
  8. 8.
    S. Ito, H. Yoshikawa, H. Masuhara, Appl. Phys. Lett. 80, 482 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    C. Hosokawa, H. Yoshikawa, H. Masuhara, Jpn J. Appl. Phys. 45, L453 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    H. Li et al., J. Am. Chem. Soc. 128, 5711 (2006)CrossRefGoogle Scholar
  11. 11.
    L. Jauffred, A.C. Richardson, L.B. Oddershede, Nano Lett. 8, 3376 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    M. Dienerowitz, M. Mazilu, K. Dholakia, J. Nanophoton. 2, 021875 (2008)CrossRefGoogle Scholar
  13. 13.
    T. Iida, H. Ishihara, Phys. Rev. Lett. 90, 057403 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    T. Iida, H. Ishihara, Phys. Rev. B 77, 245319 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    K. Inaba et al., Phys. Stat. Sol. B 243, 3829 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    T. Kudo, H. Ishihara, Phys. Stat. Sol. C 8, 66 (2011)CrossRefGoogle Scholar
  17. 17.
    T. Kudo, H. Ishihara, Phys. Rev. Lett. 109, 087402 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    T. Iida, H. Ishihara, Phys. Rev. Lett. 97, 117402 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    R. Bavli, D.F. Heller, Y.B. Band, J. Chem. Phys. 91, 6714 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    L. Novotny, B. Hecht, Principles of Nano-Optics, (Cambridge University Press, Cambridge, 2006), pp. 61–66Google Scholar
  21. 21.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions (Wiley & Sons, New York, 1992)Google Scholar
  22. 22.
    M.R. Williams, F. Chi, M.T. Cashen, H. Metcalf, Phys. Rev. A 60, R1763 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    D. Braun, A. Libchaber, Phys. Rev. Lett. 89, 188103 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Physics and ElectronicsOsaka Prefecture UniversityOsakaJapan

Personalised recommendations