Characteristics of coherent transverse optical phonon in CuI thin films on Au nano-films

  • Shota Isshiki
  • Yuuki Nagata
  • Goro Oohata
  • Akira Kawakami
  • Shingo Saito
  • Kohji Mizoguchi
Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials


We have investigated the coherent phonon in CuI thin films deposited on Au films with nanoscale roughness. It is found that the coherent transverse optical (TO) phonon in the CuI thin film on the Au film is dramatically enhanced, whereas that in the CuI thin film without the Au film is hardly observed. The enhancement of the coherent TO phonon in the CuI thin film on the Au film will originate from the surface enhanced electric field around the surface of the Au film with nanoscale roughness. To clarify the properties of the enhanced coherent phonon, we have investigated the pump-power dependence and pump-polarization dependence of the coherent phonon. We discuss the generation process of the coherent phonon in the CuI thin film on the Au film as compared with the pump-power dependence and the pump-polarization dependence.


Surface Enhance Raman Scattering Pump Power Pump Pulse Polarization Dependence Oscillation Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998)CrossRefGoogle Scholar
  2. 2.
    S. Nie, S.R. Emory, Science 275, 1102 (1997) CrossRefGoogle Scholar
  3. 3.
    R.K. Chang, T.E. Furtak, Surface Enhanced Raman Scattering (Plenum Press, New York, 1982)Google Scholar
  4. 4.
    R.M. Stöckle, Y.D. Suh, V. Deckert, R. Zenobi, Chem. Phys. Lett. 318, 131 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    T. Dekorsy, P. Leisching, K. Köhler, H. Kurz, Phys. Rev. B 50, 8106 (1994) ADSCrossRefGoogle Scholar
  6. 6.
    T. Dekorsy, G.C. Cho, H. Kurz, in Light Scattering in Solids VIII, edited by M. Cardona, G. Güntherodt (Springer-Verlag, Berlin, 2000), Chap. 4Google Scholar
  7. 7.
    H. Hase, M. Kitajima, S. Nakayama, K. Mizoguchi, Phys. Rev. Lett. 88, 067401 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    I. Katayama, S. Koga, K. Shudo, J. Takeda, T. Shimada, A. Kubo, S. Hishita, D. Fujita, M. Kitajima, Nano Lett. 11, 2648 (2011) CrossRefGoogle Scholar
  9. 9.
    J.E. Potts, R.C. Hanson, C.T. Walker, Solid State Commun. 13, 389 (1973)ADSCrossRefGoogle Scholar
  10. 10.
    I. Balslev, R. Zimmermann, A. Stahl, Phys. Rev. B 40, 4095 (1989) ADSCrossRefGoogle Scholar
  11. 11.
    F. Rossi, T. Kuhn, Rev. Mod. Phys. 74, 895 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Y.R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984)Google Scholar
  13. 13.
    Y.-X. Yan, K.A. Nelson, J. Chem. Phys. 87, 6240 (1987) ADSCrossRefGoogle Scholar
  14. 14.
    H. Takeuchi, K. Mizoguchi, M. Nakayama, K. Kuroyanagi, T. Aida, M. Nakajima, H. Harima, J. Phys. Soc. Jpn 70, 2598 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    K. Ishioka, M. Hase, M. Kitajima, H. Petek, Appl. Phys. Lett. 89, 231916 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    K.J. Yee, Y.S. Lim, T. Dekorsy, D.S. Kim, Phys. Rev. Lett. 86, 1630 (2001) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shota Isshiki
    • 1
  • Yuuki Nagata
    • 1
  • Goro Oohata
    • 1
  • Akira Kawakami
    • 2
  • Shingo Saito
    • 2
  • Kohji Mizoguchi
    • 1
  1. 1.Department of Physical ScienceOsaka Prefecture UniversityOsakaJapan
  2. 2.National Institute of Information and Communications TechnologyOsakaJapan

Personalised recommendations