Effect of pressure on photochromic furylfulgide

  • Shuji Tomotsune
  • Takao Sekiya
Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials


The effect of pressure on photochromic furylfulgide is investigated using monodispersed molecules in solution and molecules in a single crystal by measuring the optical absorption at room temperature under pressure provided using a diamond anvil cell. Monodispersed open-ring (E-form) and closed-ring (C-form) isomers in solution are stable under high pressure; however, pressure-induced E → C isomerisation is observed in a single crystal composed of E-form molecules above 3.0 GPa without UV irradiation. Photochromism of furylfulgide can be observed under high pressures up to 5.0 GPa in both monodispersed molecules and single crystals. In a single crystal, photoinduced conversion from the E-form to the C-form accelerates above a critical value when the fraction of C-form molecules becomes relatively large; this critical value depends on the applied pressure. The acceleration is due to the effect of the surrounding molecules, i.e., destabilisation of E-form molecules surrounded by a sufficient number of photoconverted C-form molecules results in conversion of the E-form molecule without the absorption of a photon.


Pressure Medium Diamond Anvil Cell Vinyl Carbon Photochromic Compound Photoexcited State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Koshino, T. Ogawa, J. Phys. Chem. Solids 60, 1915 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    V.V. Mykhaylovskyy, V.I. Sugakov, K. Koshino, T. Ogawa, Solid State Commun. 113 321 (2000)CrossRefGoogle Scholar
  3. 3.
    H. Stobbe, Chem. Ber. 37, 2232 (1904) CrossRefGoogle Scholar
  4. 4.
    H. Stobbe, Chem. Ber. 38, 3673 (1905) CrossRefGoogle Scholar
  5. 5.
    H. Stobbe, Ann. Chem. 349, 333 (1906) CrossRefGoogle Scholar
  6. 6.
    H. Stobbe, Ann. Chem. 380, 1 (1911)CrossRefGoogle Scholar
  7. 7.
    H.G. Heller, M. Szewczyk, J. Chem. Soc. Perkin Trans. 1, 1483 (1974)CrossRefGoogle Scholar
  8. 8.
    H.G. Heller, S. Oliver, J. Chem. Soc. Perkin Trans. 1, 197 (1981)CrossRefGoogle Scholar
  9. 9.
    P.J. Darcy, H.G. Heller, P.J. Strydom, J. Peter, J. Whittall, J. Chem. Soc. Perkin Trans. 1, 202 (1981)CrossRefGoogle Scholar
  10. 10.
    Y. Yokoyama, T. Goto, T. Inoue, M. Yokoyama, Y. Kurita, Chem. Lett. 1049 (1988)Google Scholar
  11. 11.
    S. Kurita, K. Kainuma, T. Tayu, J. Takeda, N. Nakayama, in Proceedings of the International Conference on Excitonic Processes in Condensed Matter, SPIE 2362, Darwin, 1994, edited by J. Singh (The International Society for Optical Engineering, Washington, 1995), pp. 434–441 Google Scholar
  12. 12.
    T. Sekiya, T. Fujita, S. Ohta, S. Kurita, Phys. Stat. Sol. B 223, 355 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    T. Sekiya, T. Fujita, S. Kurita, Phase Trans. 75, 903 (2002)CrossRefGoogle Scholar
  14. 14.
    H.K. Mao, P.M. Bell, J.W. Shaner, D.J. Steinberg, J. Appl. Phys. 49, 3276 (1978) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsYokohama National UniversityYokohamaJapan

Personalised recommendations