Wavelength modulated excitonic spectra of Cu2O thin films sandwiched by MgO plates

  • Kazunori Iwamitsu
  • Shingo Aihara
  • Tomoshige Shimamoto
  • Atsuhiro Fujii
  • Ichiro Akai
Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials

Abstract

We have investigated stress effects on yellow exciton states in a Cu2O thin film sandwiched by MgO plates by measuring wavelength modulated (WM) absorption spectra and their thermal variations. In the WM absorption spectra, dispersive spectral structures owing to 2P~4P states in the yellow excitons are clearly resolved in the thin film sample. A stress due to the lattice mismatch between Cu2O and MgO provides a large red shift of the band gap in the green excitonic system. However, in the yellow excitonic transitions, it is found that a red-shift of the 2P excitonic state is much smaller than that in the green excitonic system. This result suggests that a shallow potential minimum for the yellow excitons is built up in the Cu2O thin film sandwiched by MgO plates.

References

  1. 1.
    S.A. Moskalenko, D.W. Snoke, Bose-Einstein Condensa- tion of Excitons and Biexcitons: and Coherent Nonlinear Optics with Excitons (Cambridge University Press, Cambridge, 2005)Google Scholar
  2. 2.
    K. Yoshioka, E. Chae, M. Kuwata-Gonokami, Nat. Commun. 2, 328 (2011)CrossRefGoogle Scholar
  3. 3.
    D.P. Tranuernicht, A. Mysyrowicz, J.P. Wolfe, Phys. Rev. B 28, 3590 (1983) ADSCrossRefGoogle Scholar
  4. 4.
    K. Iwamitsu, S. Aihara, T. Shimamoto, A. Fujii, I. Akai, Phys. Stat. Sol. 9, 2489 (2012)CrossRefGoogle Scholar
  5. 5.
    G.K. White, J. Phys. C 11, 2171 (1978) ADSCrossRefGoogle Scholar
  6. 6.
    G.K. White, O.L. Anderson, J. Appl. Phys. 37, 430 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    R. Nötzel, Semicond. Sci. Technol. 11, 1365 (1996) ADSCrossRefGoogle Scholar
  8. 8.
    N. Naka, S. Hashimoto, T. Ishihara, Jpn J. Appl. Phys. 44, 5096 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    N. Naka, Ph.D. thesis, Department of Physics, Graduate School of Science, The University of Tokyo, 2002Google Scholar
  10. 10.
    K. Iwamitsu, S. Aihara, T. Shimamoto, A. Fujii, I. Akai, Rev. Sci. Instrum. 83, 073101 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    P.W. Baumeister, Phys. Rev. 121, 359 (1961) ADSCrossRefGoogle Scholar
  12. 12.
    E.F. Gross, Nuovo Cimento Suppl. 3, 672 (1956)CrossRefGoogle Scholar
  13. 13.
    T. Itoh, S. Narita, J. Phys. Soc. Jpn 39, 140 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    V.T. Agekyan, Phys. Stat. Sol. 43, 11 (1977)ADSCrossRefGoogle Scholar
  15. 15.
    D. Fröhlich, R. Kenklies, C. Uihlein, C. Schwab, Phys. Rev. Lett. 43, 1260 (1979) ADSCrossRefGoogle Scholar
  16. 16.
    Y. Toyozawa, J. Phys. Chem. Solids 25, 59 (1964)ADSCrossRefGoogle Scholar
  17. 17.
    R.J. Elliott, Phys. Rev. 108, 1384 (1957) ADSCrossRefGoogle Scholar
  18. 18.
    G.L. Squires, Practical Physics, 4th edn. (Cambridge University Press, Cambridge, 2001)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kazunori Iwamitsu
    • 1
  • Shingo Aihara
    • 1
  • Tomoshige Shimamoto
    • 2
  • Atsuhiro Fujii
    • 2
  • Ichiro Akai
    • 2
  1. 1.Graduate School of Science and TechnologyKumamoto UniversityKumamotoJapan
  2. 2.Shockwave and Condensed Matter Research CenterKumamoto UniversityKumamotoJapan

Personalised recommendations