Advertisement

Suppressing chaos in fractional-order systems by periodic perturbations on system variables

  • Marius-F. DancaEmail author
  • Wallace K. S. Tang
  • Qingyun Wang
  • Guanrong Chen
Regular Article

Abstract

Based on extensive numerical and computer-graphical simulations, it is shown that fractional-order chaotic systems can be stabilized by slightly perturbing the system state variables periodically. In this chaos control scheme, the tunable parameters are chosen empirically. The effectiveness of this chaos control method is demonstrated by fractional-order Lorenz, Chen and Rössler systems, where the underlying initial value problems are numerically integrated by using the Grünwald-Letnikov method.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    G. Chen, X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications (World Scientific, Singapore, 1998)Google Scholar
  2. 2.
    Chaos Control: Theory and Applications, edited by G. Chen, X.H. Yu (Springer, Berlin, 2003)Google Scholar
  3. 3.
    A.L. Fradkov, A.Y. Pogromsky, Introduction to Control of Oscillations and Chaos (World Scientific, Singapore, 1999)Google Scholar
  4. 4.
    Control of Chaos in Nonlinear Circuits and Systems, edited by B.W.K. Ling, H.H.C. Iu, H.K. Lam (World Scientific, Singapore, 2008)Google Scholar
  5. 5.
    E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    J. Güémez, M.A. Matías, Phys. Lett. A 181, 29 (1993)MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    M.A. Matías, J. Güémez, Phys. Rev. Lett. 72, 1455 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    M.-F. Danca, Chaos Solitons Fractals 22, 605 (2004)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    M.-F. Danca, Comput. Math. Appl. 64, 849 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    W.M. Ahmada, A.M. Harbb, Chaos Solitons Fractals 18, 693 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    A. Oustaloup, F. Levron, B. Mathieu, F.M. Nanot, IEEE Trans. Circuits Syst. I 47, 25 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Caputo, Elasticity and Dissipation (Zanichelli, Bologna, 1969)Google Scholar
  13. 13.
    L. Dorcak, Numerical Models for the Simulation of the Fractional-Order Control Systems, arXiv:math/ 0204108v1 [math.OC] (2002)Google Scholar
  14. 14.
    R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, in CISM courses and lectures (Springer-Verlag, Berlin, 1997), Vol. 378, pp. 223–276Google Scholar
  15. 15.
    K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons, New York, 1993)Google Scholar
  16. 16.
    K.B. Oldham, J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order (Elsevier Science, 1974)Google Scholar
  17. 17.
    A. Oustaloup, La dérivation non entière : théorie, synthèse et applications (Hermes, Paris, 1995)Google Scholar
  18. 18.
    I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic Press, San Diego, 1999)Google Scholar
  19. 19.
    K. Diethelm, N.J. Ford, J. Math. Anal. Appl. 265, 229 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    K. Diethelm, N.J. Ford, A.D. Freed, Nonlinear Dyn. 29, 3 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    R. Scherer, S.L. Kalla, Y. Tangc, J. Huang, Comput. Math. Appl. 62, 902 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    J.N. Ford, A.C. Simpson, Numer. Algorithms 26, 333 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    I. Petráš, Nonlinear Dyn. 57, 157 (2009)zbMATHCrossRefGoogle Scholar
  24. 24.
    I. Grigorenko, E. Grigorenko, Phys. Rev. Lett. 91, 034101 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    C. Li, G. Chen, Chaos Solitons Fractals 22, 549 (2004)ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    C. Li, G. Chen, Phys. A 341, 55 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marius-F. Danca
    • 1
    • 2
    Email author
  • Wallace K. S. Tang
    • 3
  • Qingyun Wang
    • 4
  • Guanrong Chen
    • 3
  1. 1.Department of Mathematics and Computer ScienceAvram Iancu UniversityCluj-NapocaRomania
  2. 2.Romanian Institute of Science and TechnologyCluj-NapocaRomania
  3. 3.Department of Electronic EngineeringCity University of Hong KongHong KongP.R. China
  4. 4.Department of Dynamics and ControlBeihang UniversityBeijingP.R. China

Personalised recommendations