Spin excitons in the unconventional superconducting and hidden order state of strongly correlated electrons

  • Peter ThalmeierEmail author
  • Alireza Akbari
Regular Article
Part of the following topical collections:
  1. Topical issue: New Trends in Magnetism and Magnetic Materials


The formation of collective spin excitons below the single particle continuum is observed in numerous unconventional superconductors. CeCoIn5  is the most well established case for heavy fermion compounds. It is also the first example where the splitting of magnetic excitons by a magnetic field is observed for fields within the tetragonal plane. Contrary to expectations it is revealed as a doublet excitation. We explain the splitting as the result of a strongly anisotropic spin response described within the context of an Anderson lattice type model. Recently it was shown that collective spin excitations also appear within the hidden order phase of non- superconducting CeB6. It is a signature of the itinerant nature of spin response as opposed to the commonly used localized 4f approach in this compound. We show that the salient features of the spin exciton can be explained in an itinerant quasiparticle model supplemented by hidden and antiferromagnetic order.


Heavy Fermion Random Phase Approximation Inelastic Neutron Scatter Unconventional Superconductor Heavy Fermion Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y. Barlas, C.M. Varma (2012), arXiv:1206.0400 [cond- mat.supr-con]Google Scholar
  2. 2.
    P.B. Littlewood, C.M. Varma, Phys. Rev. B 26, 4883 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    P.W. Anderson, Phys. Rev. 112, 1900 (1958)MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    J.R. Schrieffer, Theory of superconductivity (W.A. Benjamin, Reading, Massachusetts, 1964)Google Scholar
  5. 5.
    P.C. Martin, Superconductivity (Marcel Dekker, New York, 1969), Vol. 1, Chap. 7, p. 371Google Scholar
  6. 6.
    J. Chang, I. Eremin, P. Thalmeier, P. Fulde, Phys. Rev. B 75, 024503 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    I. Eremin, G. Zwicknagl, P. Thalmeier, P. Fulde, Phys. Rev. Lett. 101, 187001 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    C. Stock, C. Broholm, J. Hudis, H.J. Kang, C. Petrovic, Phys. Rev. Lett. 100, 087001 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    P.M.C. Rourke, M.A. Tanatar, C.S. Turel, J. Berdeklis, C. Petrovic, J.Y.T. Wei, Phys. Rev. Lett. 94, 107005 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    K. Izawa, H. Yamaguchi, Y. Machida, H. Shishido, R. Settai, Y. Onuki, Phys. Rev. Lett. 87, 057002 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    K. An, T. Sakakibara, R. Settai, Y. Onuki, M. Hiragi, M. Ichioka, K. Machida, Phys. Rev. Lett. 104, 037002 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Ismer, I. Eremin, E. Rossi, D.K. Morr, Phys. Rev. Lett. 99, 047005 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    C. Stock, C. Broholm, Y. Zhao, F. Demmel, H.J. Kang, K.C. Rule, C. Petrovic, Phys. Rev. Lett. 109, 167207 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    A. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993)Google Scholar
  15. 15.
    W. Bao, A.T. Savici, G.E. Granroth, C. Broholm, K. Habicht, Y. Qiu, J. Hu, T. Liu, Z.Q. Mao (2010), arXiv: 1002.1617 [cond-mat.supr.con]Google Scholar
  16. 16.
    A. Akbari, P. Thalmeier, Phys. Rev. B 86, 134516 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T. Tayama, A. Harita, T. Sakakibara, Y. Haga, H. Shishido, R. Settai, Y. Onuki, Phys. Rev. B 65, 180504 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    A. Akbari, P. Thalmeier, P. Fulde, Phys. Rev. Lett. 102, 106402 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    R. Shiina, H. Shiba, P. Thalmeier, J. Phys. Soc. Jpn 66, 1741 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    T. Matsumura, T. Yonemura, K. Kunimori, M. Sera, F. Iga, Phys. Rev. Lett. 103, 017203 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    T. Matsumura, T. Yonemura, K. Kunimori, M. Sera, F. Iga, T. Nagao, J.I. Igarashi, Phys. Rev. B 85, 174417 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R. Shiina, J. Phys. Soc. Jpn 70, 2746 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    R. Shiina, O. Sakai, H. Shiba, P. Thalmeier, J. Phys. Soc. Jpn 67, 941 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    J.I. Igarashi, T. Nagao, J. Phys. Soc. Jpn 71, 1771 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    R. Shiina, H. Shiba, P. Thalmeier, A. Takahashi, O. Sakai, J. Phys. Soc. Jpn 72, 1216 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    P. Thalmeier, R. Shiina, H. Shiba, A. Takahashi, O. Sakai, J. Phys. Soc. Jpn 72, 3219 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    M. Loewenhaupt, J.M. Carpenter, C.K. Loong, J. Magn. Magn. Mater. 52, 245 (1985)ADSCrossRefGoogle Scholar
  28. 28.
    G. Friemel, Y. Li, A. Dukhnenko, N. Shitsevalova, N. Sluchanko, A. Ivanov, V. Filipov, B. Keimer, D. Inosov, Nat. Commun. 3, 380 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Kunii, J. Magn. Magn. Mater. 63-64, 673 (1987)ADSCrossRefGoogle Scholar
  30. 30.
    O. Stockert et al., Nat. Phys. 7, 119 (2011)CrossRefGoogle Scholar
  31. 31.
    K.S. Nemkovski, J.M. Mignot, P.A. Alekseev, A.S. Ivanov, E.V. Nefeodova, A.V. Rybina, L.P. Regnault, F. Iga, T. Takabatake, Phys. Rev. Lett. 99, 137204 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    A. Akbari, P. Thalmeier, Phys. Rev. Lett. 108, 146403 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Max-Planck-Institut für Chemische Physik fester StoffeDresdenGermany

Personalised recommendations