Advertisement

Spin-dimerization in rare-earth substituted La2RuO5

  • S. RieggEmail author
  • A. Günther
  • H.-A. Krug von Nidda
  • M.V. Eremin
  • A. Reller
  • A. Loidl
  • S.G. Ebbinghaus
Regular Article

Abstract

The Ru-Ru spin-singlet formation in La2 − x L n x RuO5 (Ln = Pr, Nd, Sm, Gd, Dy) was investigated by measurements of the specific heat and magnetic susceptibility. After subtraction of the lattice contribution from the specific heat (C p ), similar excess entropy values were obtained for all compounds. These entropies can be explained by the formation of antiferromagnetic Ru-spin dimers at low temperatures and provide a lower estimate for the intradimer exchange strength. Pronounced changes in the transition temperatures and a broadening of the corresponding peak in C p were observed. These changes depend on the rare-earth element and are due to local structural changes and heterogeneities caused by the substitution. The magnetic susceptibilities can be described by the sum of a rare-earth paramagnetic moment and the susceptibility of the unsubstituted La2RuO5. Density functional theory (DFT) calculations were performed for various compounds to investigate the origin of the magnetic transition and the relationship between structural changes and the spin-dimerization temperature. The combination of the present results with previous structural investigations supports the model of a spin-pairing of the Ru moments which occurs as a reason of the structural phase transition in La2 − x L n x RuO5.

Keywords

Solid State and Materials 

References

  1. 1.
    S.J. Makowski, J.A. Rodgers, P.F. Henry, J.P. Attfield, J.-W.G. Bos, Chem. Mater. 21, 264 (2009)CrossRefGoogle Scholar
  2. 2.
    Z.H. Han, H.E. Mohottala, J.I. Budnick, W.A. Hines, P.W. Klamut, B. Dabrowski, M. Maxwell, J. Phys.: Condens. Matter 18, 2273 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    J.A. Rodgers, P.D. Battle, C.P. Grey, J. Sloan, Chem. Mater. 17, 4362 (2005)CrossRefGoogle Scholar
  4. 4.
    W.G. Mumme, A.D. Wadsley, Acta Cryst. B 24, 1327 (1968)CrossRefGoogle Scholar
  5. 5.
    G. Cao, S. McCall, Z.X. Zhou, C.S. Alexander, J.E. Crow, R.P. Guertin, C.H. Mielke, Phys. Rev. B 63, 144427 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    P. Khalifah, R. Osborn, Q. Huang, H.W. Zandbergen, R. Jin, Y. Liu, D. Mandrus, R.J. Cava, Science 297, 2237 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    S.G. Ebbinghaus, S. Riegg, T. Götzfried, A. Reller, Eur. Phys. J. ST 180, 91 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Riegg, U. Sazama, M. Fröba, A. Reller, S.G. Ebbinghaus, Phys. Rev. B 84, 014403 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    D.I. Khomskii, T. Mizokawa, Phys. Rev. Lett. 94, 156402 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    H. Wu, Z. Hu, T. Burnus, J.D. Denlinger, P.G. Khalifah, D.G. Mandrus, L.-Y. Jang, H.H. Hsieh, A. Tanaka, K.S. Liang, J.W. Allen, R.J. Cava, D.I. Khomskii, L.H. Tjeng, Phys. Rev. Lett. 96, 256402 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    S.J. Moon, W.S. Choi, S.J. Kim, Y.S. Lee, P.G. Khalifah, D. Mandrus, T.W. Noh, Phys. Rev. Lett. 100, 116404 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    S. Riegg, A. Günther, H.-A. Krug von Nidda, A. Loidl, M.V. Eremin, A. Reller, S.G. Ebbinghaus, Phys. Rev. B 86, 115125 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    P. Boullay, D. Mercurio, A. Bencan, A. Meden, G. Drazic, M. Kosec, J. Solid State Chem. 170, 294 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S.G. Ebbinghaus, Acta Cryst. C 61, i96 (2005)CrossRefGoogle Scholar
  15. 15.
    S.K. Malik, D.C. Kundaliya, R.D. Kale, Solid State Commun. 135, 166 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    V. Eyert, S.G. Ebbinghaus, T. Kopp, Phys. Rev. Lett. 96, 256401 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    V. Eyert, S.G. Ebbinghaus, Prog. Solid State Chem. 35, 433 (2007)CrossRefGoogle Scholar
  18. 18.
    E.C. Samulon, M.C. Shapiro, I.R. Fisher, Phys. Rev. B 84, 054417 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    K. Koepernick, H. Eschrig, Phys. Rev. B 59, 1743 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    I. Opahle, K. Koepernick, H. Eschrig, Phys. Rev. B 60, 14035 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    S. Riegg, A. Reller, S.G. Ebbinghaus, J. Solid State Chem. 188, 17 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R.P. Singh, C.V. Tomy, J. Phys.: Condens. Matter 20, 235209 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    C. Kant, J. Deisenhofer, A. Günther, F. Schrettle, A. Loidl, M. Rotter, D. Johrendt, Phys. Rev. B 81, 014529 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    S. Layek, V.K. Anand, Z. Hossain, J. Magn. Magn. Mater 321, 3447 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    A. Tari, The specific heat of matter at low temperatures (Imperial College Press, London, 2003)Google Scholar
  26. 26.
    M. Heinrich, H.-A. Krug von Nidda, V. Fritsch, A. Loidl, Phys. Rev. B 63, 193103 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    B. Rivas-Murias, H.D. Zhou, J. Rivas, F. Rivadulla, Phys. Rev. B 83, 165131 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    H. Lueken, Magnetochemie (Teubner, Stuttgart - Leipzig, 1999)Google Scholar
  29. 29.
    W.G. Penney, R. Schlapp, Phys. Rev. 41, 194 (1932)ADSCrossRefGoogle Scholar
  30. 30.
    A. Dittl, S. Krohns, J. Sebald, F. Schrettle, M. Hemmida, H.-A. Krug von Nidda, S. Riegg, A. Reller, S.G. Ebbinghaus, A. Loidl, Eur. Phys. J. B 79, 391 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Riegg
    • 1
    Email author
  • A. Günther
    • 1
  • H.-A. Krug von Nidda
    • 1
  • M.V. Eremin
    • 2
  • A. Reller
    • 3
  • A. Loidl
    • 1
  • S.G. Ebbinghaus
    • 4
  1. 1.Experimental Physics V, Center for Electronic Correlations and Magnetism, University of AugsburgAugsburgGermany
  2. 2.Kazan Federal UniversityKazanRussian Federation
  3. 3.Resource Strategy, University of AugsburgAugsburgGermany
  4. 4.Solid State Chemistry, Martin-Luther University Halle-WittenbergHalleGermany

Personalised recommendations