Rare earth rhodium borides RRh3B (R = Y, Zr, and Nb): mechanical, thermal and optical properties

Regular Article

Abstract

We report here ab initio density functional theory (DFT) calculations of structural, elastic, Peierls stress, thermodynamic and optical properties of RRh3B (R = Y, Zr and Nb) using the plane wave pseudopotential method. The materials possess better ductile behavior in comparison with a selection of layered MAX phases but the anisotropy is strong, particularly in NbRh3B. The Peierls stress, approximately 3-4 times larger than in MAX phases, show that dislocation movement may follow but with much reduced occurrences compared to MAX phases. The temperature and pressure dependence of bulk modulus, specific heats, thermal expansion coefficient, and Debye temperature are calculated for the first time for two of the three compounds using the quasi-harmonic Debye model with phononic effects for elevated temperature and pressure. The obtained results are discussed in comparison to the behavior of other related compounds. Further the features of optical functions obtained for the first time are discussed. The study reveals that the reflectivity is high in the IR-UV regions up to ~17.5 eV (YRh3B, ZrRh3B) and 20 eV (NbRh3B), thus showing promise as good coating materials.

Keywords

Computational Methods 

References

  1. 1.
    P. Rogl, L. Delong, J. Less-Common Met. 91, 97 (1983)CrossRefGoogle Scholar
  2. 2.
    R.E. Schaak, M. Avdeev, W.L. Lee, G. Lawes, H.W. Zandbergen, J.D. Jorgensen, N.P. Ong, A.P. Ramirez, R.J. Cava, J. Solid State Chem. 177, 1244 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    D. Music, Z. Sun, J.M. Schneider, Phys. Rev. B 71, 052104 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    D. Music, J.M. Schneider, Appl. Phys. Lett. 88, 031914 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    R. Sahara, T. Shishido, A. Nomura, K. Kudou, S. Okada, V. Kumar, K. Nakajima, Y. Kawazoe, Phys. Rev. B 76, 024105 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    K. Yubuta, A. Nomura, K. Nakaima, T. Shishido, J. Alloys Compd. 471, 341 (2009)CrossRefGoogle Scholar
  7. 7.
    K.T. He et al., Nature 411, 54 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    H. Takei, N. Kobayashi, H. Yamauchi, T. Shishido, T. Fukase, J. Less-Common Met. 125, 233 (1986)CrossRefGoogle Scholar
  9. 9.
    M.W. Barsoum, Prog. Solid State Chem. 28, 201 (2000)CrossRefGoogle Scholar
  10. 10.
    H. Yoo, M.W. Barsoum, T. El-Raghy, Nature 407, 581 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    M.W. Barsoum, T. Zhen, S.R. Kalidinidi, M. Radovic, A. Murugaiah, Nat. Mater. 2, 107 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Sun, R. Ahuja, J.M. Schneider, Phys. Rev. B 68, 224112 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Sun, R. Ahuja, S. Li, J.M. Schneider, Appl. Phys. Lett. 83, 899 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    D. Music, Z. Sun, R. Ahuja, J.M. Schneider, Phys. Rev. B 73, 134117 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M.W. Barsoum, T. El-Raghy, J. Am. Ceram. Soc. 79, 1953 (1996)CrossRefGoogle Scholar
  16. 16.
    Z. Sun, Y. Zhou, Phys. Rev. B 60, 1441 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Sun, Y. Zhou, M. Li, Corros. Sci. 43, 1095 (2001)CrossRefGoogle Scholar
  18. 18.
    T. Shishido, J. Ye, K. Kudou, S. Okada, K. Obara, T. Sugawara, M. Oku, K. Wagatsuma, H. Horiuchi, T. Fukuda, J. Alloys Compd. 291, 52 (1999)CrossRefGoogle Scholar
  19. 19.
    P. Ravindran, S. Sankaralingam, R. Asokamani, Phys. Rev. B 52, 12921 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    D. Music, J.M. Schneider, Appl. Phys. Lett. 89, 121914 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    F. Litimein, R. Khenata, A. Bouhemadou, Y. Al-Douri, S. Bin Omran, Mol. Phys. 110, 121 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R. Sahara, T. Shishido, A. Nomura, K. Kudou, S. Okada, V. Kumar, K. Nakajima, Y. Kawazoe, Comput. Mater. Sci. 36, 12 (2006)CrossRefGoogle Scholar
  23. 23.
    S.J. Clark, M.D. Segall, M.J. Probert, C.J. Pickard, P.J. Hasnip, M.C. Payne, Z. Kristallogr. 220, 567 (2005)CrossRefGoogle Scholar
  24. 24.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)ADSCrossRefGoogle Scholar
  26. 26.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    M.A. Blanco, E. Francisco, V. Luaña, Comput. Phys. Commun. 158, 57 (2004)ADSMATHCrossRefGoogle Scholar
  28. 28.
    F. Birch, J. Geophy. Res. 83, 1257 (1978)ADSCrossRefGoogle Scholar
  29. 29.
    T. Shishido, Y. Ishizawa, J. Ye, S. Okada, K. Kudou, K. Iizumi, M. Oku, M. Tanaka, A. Yoshikawa, A. Nomura, T. Sugawara, S. Tozawa, K. Obara, S. Oishi, N. Kamegashira, T. Amano, R. Sahara, V. Kumar, H. Horiuchi, S. Kohiki, Y. Kawazoe, K. Nakajima, J. Alloys Compd. 408-412, 375 (2006)CrossRefGoogle Scholar
  30. 30.
    S.F. Pugh, Philos. Mag. 45, 823 (1954)Google Scholar
  31. 31.
    D. Music, J.M. Schneider, J. Phys.: Condens. Matter 20, 055224 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    I.R. Shein, A.L. Ivanovskii, Phys. Stat. Sol. B 248, 228 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    M.T. Nasir, A.K.M.A. Islam, Comput. Mater. Sci. 65, 365 (2012)CrossRefGoogle Scholar
  34. 34.
    M. Roknuzzaman, A.K.M.A. Islam, arXiv:1206.4514 [cond-mat.Supr-com], 2012Google Scholar
  35. 35.
    P. Lloveras, T. Casta’n, M. Porta, A. Planes, A. Saxena, Phys. Rev. Lett. 100, 165707 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    C.M. Zener, Elasticity and Anelasticity of Metals (University of Chicago Press, Chicago, 1948)Google Scholar
  37. 37.
    G. Lu, in The Peierls-Nabarro Model of Dislocations: a Venerable Theory and its Current Development, Handbook of Materials Modeling, edited by S. Yip (Springer, Amsterdam, 2005), pp. 1–19Google Scholar
  38. 38.
    P. Cordier, T. Ungar, L. Zsoldos, G. Tichy, Nature 428, 837 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    W. Zhang, Z. Li, X.R. Chen, L.C. Kai, F.Q. Jing, Chin. Phys. Lett. 25, 2603 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    B. Zhou, R.J. Wang, Y.L. Zhang, F.Y. Li, R.C. Yu, C.Q. Jin, Chin. J. High Pressure Phys. 17, 157 (2003)Google Scholar
  41. 41.
    Materials Studio CASTEP manual © Accelrys 2010, http://www.tcm.phy.cam.ac.uk/castep/documentation/WebHelp/CASTEP.html
  42. 42.
    S. Li, R. Ahuja, M.W. Barsoum, P. Jena, B. Johansson, Appl. Phys. Lett. 92, 221907 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    R. Saniz, L. Ye, T. Shishidou, A.J. Freeman, Phys. Rev. B 74, 014209 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    C.M.I. Okoye, J. Phys.: Condens. Mater. 15, 833 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsMawlana Bhashani Science and Technology UniversitySantosh, TangailBangladesh
  2. 2.Department of PhysicsRajshahi UniversityRajshahiBangladesh

Personalised recommendations