Casimir attractive-repulsive transition in MEMS

  • M. Boström
  • S.Å. Ellingsen
  • I. Brevik
  • M.F. Dou
  • C. Persson
  • Bo E. Sernelius
Regular Article

Abstract

Unwanted stiction in micro- and nanomechanical (NEMS/MEMS) systems due to dispersion (van der Waals, or Casimir) forces is a significant hurdle in the fabrication of systems with moving parts on these length scales. Introducing a suitably dielectric liquid in the interspace between bodies has previously been demonstrated to render dispersion forces repulsive, or even to switch sign as a function of separation. Making use of recently available permittivity data calculated by us we show that such a remarkable non-monotonic Casimir force, changing from attractive to repulsive as separation increases, can in fact be observed in systems where constituent materials are in standard NEMS/MEMS use requiring no special or exotic materials. No such nonmonotonic behaviour has been measured to date. We calculate the force between a silica sphere and a flat surface of either zinc oxide or hafnia, two materials which are among the most prominent for practical microelectrical and microoptical devices. Our results explicate the need for highly accurate permittivity functions of the materials involved for frequencies from optical to far-infrared frequencies. A careful analysis of the Casimir interaction is presented, and we show how the change in the sign of the interaction can be understood as a result of multiple crossings of the dielectric functions of the three media involved in a given set-up.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948)MATHGoogle Scholar
  2. 2.
    E.M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955) [Sov. Phys. JETP 2, 73 (1956)]Google Scholar
  3. 3.
    S.K. Lamoreaux, Phys. Rev. Lett. 78, 5 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    S.K. Lamoreaux, Phys. Rev. A 82, 024102 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    R.S. Decca, D. López, E. Fischbach, G.L. Klimchitskya, D.E. Krause, V.M. Mostepanenko, Ann. Phys. 318, 37 (2005)ADSMATHCrossRefGoogle Scholar
  7. 7.
    A.O. Sushkov, W.J. Kim, D.A.R. Dalvit, S.K. Lamoreaux, Nat. Phys. 7, 230 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Boström, Bo E. Sernelius, Phys. Rev. Lett. 84, 4757 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    I. Brevik, S.Å. Ellingsen, K.A. Milton, New J. Phys. 8, 236 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    I.E. Dzyaloshinskii, E.M. Lifshitz, L.P. Pitaevskii, Adv. Phys. 10, 165 (1961)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    P. Richmond, B.W. Ninham, Solid State Commun. 9, 1045 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    P. Richmond, B.W. Ninham, R.H. Ottewill, J. Colloid Int. Sci. 45, 69 (1973)CrossRefGoogle Scholar
  13. 13.
    T.H. Boyer, Phys. Rev. A 9, 2078 (1974)ADSCrossRefGoogle Scholar
  14. 14.
    K.A. Milton, E.K. Abalo, P. Parashar, N. Pourtolami, I. Brevik, S.Å. Ellingsen, J. Phys. A: Math. Theor. 45, 374006 (2012)CrossRefGoogle Scholar
  15. 15.
    J.N. Munday, F. Capasso, V.A. Parsegian, Nature 457, 07610 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Milling, P. Mulvaney, I. Larson, J. Colloid Interf. Sci. 180, 460 (1996)CrossRefGoogle Scholar
  17. 17.
    A. Meurk, P.F. Luckham, L. Bergström, Langmuir 13, 3896 (1997)CrossRefGoogle Scholar
  18. 18.
    S. Lee, W.M. Sigmund, J. Colloid Interf. Sci. 243, 365 (2001)CrossRefGoogle Scholar
  19. 19.
    S. Lee, W.M. Sigmund, J. Colloids Surf. A 204, 43 (2002)CrossRefGoogle Scholar
  20. 20.
    A.A. Feiler, L. Bergström, M.W. Rutland, Langmuir 24, 2274 (2008)CrossRefGoogle Scholar
  21. 21.
    A.D. Phan, N.A. Viet, Phys. Rev. A 84, 62503 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    M. Boström, Bo E. Sernelius, I. Brevik, B.W. Ninham, Phys. Rev. A 85, 010701(R) (2012)ADSGoogle Scholar
  23. 23.
    M. Boström, Bo E. Sernelius, G. Baldissera, C. Persson, B.W. Ninham, Phys. Rev. A 85, 044702 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    C.H. Anderson, E.S. Sabisky, Phys. Rev. Lett. 24, 1049 (1970)ADSCrossRefGoogle Scholar
  25. 25.
    F. Hauxwell, R.H. Ottewil, J. Colloid Int. Sci. 34, 473 (1970)CrossRefGoogle Scholar
  26. 26.
    B.W. Ninham, V.A. Parsegian, Biophys. J. 10, 647 (1970)CrossRefGoogle Scholar
  27. 27.
    G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    I. Pirozhenko, A. Lambrecht, V.B. Svetovoy, New J. Phys. 8, 238 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    V.B. Svetovoy, P.J. van Zwol, G. Palasantzas, J.Th.M. De Hosson, Phys. Rev. B 77, 035439 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    P.J. van Zwol, G. Palasantzas, J.Th.M. De Hosson, Phys. Rev. B 79, 195428 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    A. Grabbe, Langmuir 9, 797 (1993)CrossRefGoogle Scholar
  32. 32.
    M. Shishkin, G. Kresse, Phys. Rev. B 75, 235102 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    M. Dou, C. Persson, Phys. Status Solidi A 209, 75 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    H.A. Lorentz, Ann. Phys. Chem. 9, 641 (1880)ADSMATHGoogle Scholar
  35. 35.
    H. Kuzmany, Solid State Spectroscopy: An Introduction (Springer, Berlin, 2009)Google Scholar
  36. 36.
    C. Klingshirn, Semiconductor Optics (Springer, Berlin, 2004)Google Scholar
  37. 37.
    N. Ashkenov et al., Phys. Rev. B 93, 126 (2003)Google Scholar
  38. 38.
    E.F. Venger, A.V. Melnichuk, L.Lu. Melnichuk, Yu.A. Pasechnik, Phys. Stat. Sol. 188, 823 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    E. Cockayne, Phys. Rev. B 75, 094103 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    X. Gonze, D.C. Allan, M.P. Teter, Phys. Rev. Lett. 68, 3603 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    F. Gervais, B. Piriou, Phys. Rev. B 11, 3944 (1975)ADSCrossRefGoogle Scholar
  42. 42.
    P.P. Gonzalez-Borrero, F. Sato, A.N. Medina, M.L. Baesso, A.C. Bento, G. Baldissera, C. Persson, G.A. Niklasson, C.G. Granqvist, A. Ferreira da Silva, Appl. Phys. Lett. 96, 061909 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    P.J. van Zwol, G. Palasantzas, Phys. Rev. A 81, 062502 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Landolt-Börnstein, in Group V: Geophysics and Space Research, edited by K.-H. Hellwege (Springer-Verlag, Berlin, 1982), Vol. 1bGoogle Scholar
  45. 45.
    M.E. Striefler, G.R. Barsch, Phys. Rev. B 12, 4553 (1975)ADSCrossRefGoogle Scholar
  46. 46.
    J. Robertson, Eur. Phys. J. Appl. Phys. A 28, 265 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E.M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, B. Monemar, J. Appl. Phys. 93, 126 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    B.V. Deryaguin, I.I. Abrikossova, Soviet Phys.-Doklady 1, 280 (1956)ADSGoogle Scholar
  49. 49.
    Bo E. Sernelius, Surface Modes in Physics (Wiley-VCH, Berlin, 2001)Google Scholar
  50. 50.
    Bo E. Sernelius, C.E. Román-Velázquez, Phys. Rev. A 78, 032111 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Bo E. Sernelius, C.E. Román-Velázquez, J. Phys.: Conf. Ser. 161, 012016 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    M. Boström, Bo E. Sernelius, Phys. Rev. A 85, 012508 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    V. Svetovoy, Z. Moktadir, M. Elwenspoek, H. Mizuta, Europhys. Lett. 96, 14006 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. Boström
    • 1
    • 2
  • S.Å. Ellingsen
    • 1
  • I. Brevik
    • 1
  • M.F. Dou
    • 2
  • C. Persson
    • 2
    • 3
  • Bo E. Sernelius
    • 4
  1. 1.Department of Energy and Process EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Materials Science and EngineeringRoyal Institute of TechnologyStockholmSweden
  3. 3.Department of PhysicsUniversity of OsloOsloNorway
  4. 4.Division of Theory and Modeling, Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden

Personalised recommendations