Advertisement

Flexible two-qubit controlled phase gate in a hybrid solid-state system

  • F.Y. ZhangEmail author
  • Y. Shi
  • C. Li
  • H.S. Song
Regular Article

Abstract

We develop a theoretical scheme for creating coupling between nitrogen-vacancy (N-V) ensemble and superconducting qubit using a transmission line resonator. Through adjusting local external flux threading the superconducting qubit loop, the desired coupling between random superconducting qubit and transmission line resonator is obtained at will. Moreover, the flexible two-qubit controlled phase gate is realized. Also, our protocol might be implemented via the current experimental technology.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  2. 2.
    L.K. Grover, Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    P.W. Shor, in Proceedings of the 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, 1994), p. 124Google Scholar
  4. 4.
    Q.A. Turchette et al., Phys. Rev. Lett. 75, 4710 (1995)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    X. Li et al., Science 301, 809 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    N.A. Gershenfeld, I.L. Chuang, Science 275, 350 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4714 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    L. Childress et al., Science 314, 281 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    A. Lenef, S.C. Rand, Phys. Rev. B 53, 13441 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    N.B. Manson et al., Phys. Rev. B 74, 104303 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    F. Jelezko et al., Phys. Rev. Lett. 92, 076401 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    A.M. Stoneham, Physics 2, 34 (2009)CrossRefGoogle Scholar
  13. 13.
    F. Shi et al., Phys. Rev. Lett. 105, 040504 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    P. Pei et al., Phys. Rev. A 84, 042339 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    F.Y. Zhang et al., Eur. Phys. J. D 63, 165 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    D.I. Schuster et al., Phys. Rev. Lett. 105, 140501 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    H. Wu et al., Phys. Rev. Lett. 105, 140503 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    J.H. Wesenberg et al., Phys. Rev. Lett. 103, 070502 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Imamoǧlu, Phys. Rev. Lett. 102, 083602 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    W.L. Yang et al., Phys. Rev. A 84, 010301(R) (2011)ADSGoogle Scholar
  21. 21.
    D. Marcos et al., Phys. Rev. Lett. 105, 210501 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Xiaobo Zhu et al., Nature 478, 221 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    T. Hümmer et al., Phys. Rev. A 85, 052320 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    V. Ranjan, G. de Lange, R. Schutjens, T. Debelhoir, J.P. Groen, D. Szombati, D.J. Thoen, T.M. Klapwijk, R. Hanson, L. DiCarlo, arXiv:1208.5473v1 (2012)Google Scholar
  25. 25.
    A.A. Abdumalikov et al., Phys. Rev. B 78, 180502 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Kubo et al., Phys. Rev. Lett. 105, 140502 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Kubo et al., Phys. Rev. Lett. 107, 220501 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    C.P. Yang, Y.X. Liu, F. Nori, Phys. Rev. A 81, 062323 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Makhlim, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    J.Q. You, F. Nori, Phys. Today 58, 42 (2005)CrossRefGoogle Scholar
  31. 31.
    J.R. Maze et al., New. J. Phys. 13, 025025 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    N.B. Manson, J.P. Harrison, M.J. Sellars, Phys. Rev. B 74, 104303 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    M. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997), Chap. 2Google Scholar
  34. 34.
    A. Blais et al., Phys. Rev. A 75, 032329 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    C.W. Wu et al., Phys. Rev. A 82, 014303 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    J. Wei, E. Norman, J. Math. Phys. 4, 575 (1963)MathSciNetADSzbMATHCrossRefGoogle Scholar
  37. 37.
    J.F. Poyatos, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 78, 390 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    A. Blais et al., Phys. Rev. A 69, 062320 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    Z.Y. Xue, Z.D. Wang, S.L. Zhu, Phys. Rev. A 77, 024301 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    J. Koch et al., Phys. Rev. A 76, 042319 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    T. Gaebel et al., Nat. Phys. 2, 408 (2006)CrossRefGoogle Scholar
  42. 42.
    J. Harrison, M.J. Sellarsa, N.B. Mansona, Diam. Relat. Mater. 15, 586 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    G. Balasubramanian et al., Nat. Mater. 8, 383 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Y.D. Wang et al., Phys. Rev. B 81, 104524 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic Technology, Dalian University of TechnologyDalianP.R. China

Personalised recommendations