Dynamics of interacting oxygen ions in yttria stabilized zirconia: bulk material and nanometer thin films

Regular Article


The oxygen vacancy dynamics in bulk yttria-stabilized zirconia studied experimentally by conductivity relaxation and quasielastic light scattering had shown anomalous properties that had been attributed to the many-ion effects originating from ion-ion interaction. In the explanation of the anomalous properties given more than ten years ago, some predictions including the actual value of the energy barrier opposing oxygen ion hop have been made but remain unverified. Since then, many molecular dynamics simulations on oxygen vacancy dynamics in bulk YSZ have been published. Moreover, oxygen vacancy dynamics in nanometer thin films of YSZ fabricated in various fashion have been measured by conductivity relaxation as well as studied by computer simulations. This rich collection of new experimental and computer simulations results provide fertile ground for testing the predictions made before. The tests are made and the results are positive. The advance lends considerable support of the previously published explanation of oxygen vacancy dynamics in bulk YSZ. We pointed out that ion dynamics similar to YSZ are found in other ionic conductors, and the explanation for YSZ given here also works there.


Solid State and Materials 


  1. 1.
    D. Steele, B.E.F. Fender, J. Phys. C: Solid State Phys. 7, 1 (1974)ADSCrossRefGoogle Scholar
  2. 2.
    C.R.A. Catlow, A.V. Chadwick, G.N. Greaves, L.M. Moroney, J. Am. Ceram. Soc. 69, 272 (1986)CrossRefGoogle Scholar
  3. 3.
    B.W. Veal, A.G. McKale, A.P. Paulikas, S.J. Rothman, L.J. Nowicki, Physica B 150, 234 (1988)CrossRefGoogle Scholar
  4. 4.
    J.E. Bauerle, J. Hrizo, J. Phys. Chem. Solids 30, 565 (1969)ADSCrossRefGoogle Scholar
  5. 5.
    R.E.W. Casselton, Phys. Stat. Sol. 2, 571 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Dixon, L.D. La Grange, U. Merten, C.F. Miller, J.T. Porter, J. Electrochem. Soc. 110, 276 (1963)CrossRefGoogle Scholar
  7. 7.
    H. Näfe, Solid State Ion. 13, 255 (1984)CrossRefGoogle Scholar
  8. 8.
    S. Shin, M. Ishigame, Phys. Rev. B 34, 8875 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    J.D. Solier, I. Cachadiña, A. Dominguez-Rodriguez, Phys. Rev. B 48, 3704 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    D.W. Strickler, W.G. Carlson, J. Amer. Ceram. Soc. 47, 122 (1964)CrossRefGoogle Scholar
  11. 11.
    T. Suemoto, M. Ishigame, Phys. Rev. B 33, 2757 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    C. León, M.L. Lucía, J. Santamaría, Phys. Rev. B 55, 882 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    A. Pimenov, J. Ullrich, P. Lunkenheimer, A. Loidl, C.H. Ruscher, Solid State Ion. 109, 111 (1998)CrossRefGoogle Scholar
  14. 14.
    A. Rivera, J. Santamaría, C. León, Appl. Phys. Lett. 78, 610 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    C. León, P. Lunkenheimer, K.L. Ngai, Phys. Rev. B 64, 184304 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    M. Kilo, C. Argirusis, G. Borchardt, R.A. Jackson, Phys. Chem. Chem. Phys. 5, 2219 (2003)CrossRefGoogle Scholar
  17. 17.
    R. Krishnamurthy, Y.G. Yoon, D.J. Srolovitz, R. Car, J. Am. Ceram. Soc. 87, 1821 (2004)CrossRefGoogle Scholar
  18. 18.
    R. Pornprasertsuk, P. Ramanarayanan, C.B. Musgrave, F.B. Prinz, J. Appl. Phys. 98, 103513 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    R. Devanathan, W.J. Weber, S.C. Singhal, J.D. Gale, Solid State Ion. 177, 1251 (2006)CrossRefGoogle Scholar
  20. 20.
    F. Pietrucci, M. Bernasconi, A. Laio, M. Parrinello, Phys. Rev. B 78, 094301 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A.C.T. van Duin, B.V. Merinov, S.S. Jang, W.A. Goddard III, J. Phys. Chem. A 112, 3133 (2008)CrossRefGoogle Scholar
  22. 22.
    Eunseok Lee, Friedrich B. Prinz, Wei Cai, Phys. Rev. B 83, 052301 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Kah Chun Lau, Brett I Dunlap, J. Phys.: Condens. Matter 23, 035401 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    A. Tarancón, A. Morata, F. Peiró, G. Dezanneau, Fuel Cells 1, 26 (2011)CrossRefGoogle Scholar
  25. 25.
    K.L. Ngai, Philos. Mag. B 77, 187 (1998)ADSGoogle Scholar
  26. 26.
    I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Solid State Ion. 176, 1319 (2005)CrossRefGoogle Scholar
  27. 27.
    J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 321, 676 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, M.R. Diaz-Guilln, K.J. Moreno, J.A. Diaz-Guillen, E. Iborra, A.F. Fuentes, S.J. Pennycook, C. Leon, J. Santamaria, Chem. Phys. Chem. 10, 1003 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Rivera-Calzada, M.R. Diaz-Guillen, O.J. Dura, G. Sanchez-Santolino, T.J. Pennycook, R. Schmidt, F.Y. Bruno, J. Garcia-Barriocanal, Z. Sefrioui, N.M. Nemes, M. Garcia-Hernandez, M. Varela, C. Leon, S.T. Pantelides, S.J. Pennycook, J. Santamaria, Adv. Mater. 23, 5268 (2011)CrossRefGoogle Scholar
  30. 30.
    K.L. Ngai, C. León, Phys. Rev. B 60, 9396 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    K.L. Ngai, C. León, J. Non-Cryst. Solids 315, 124 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    K.L. Ngai, G.N. Greaves, C.T. Moynihan, Phys. Rev. Lett. 80, 1018 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    K.L. Ngai, U. Strom, Phys. Rev. B 38, 10350 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    K.L. Ngai, J. Habasaki, C. León, A. Rivera, Z. Phys. Chem. 219, 47 (2005)CrossRefGoogle Scholar
  35. 35.
    K.L. Ngai, C. León, Phys. Rev. B 66, 064308 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    J. Habasaki, K.L. Ngai, J. Non-Cryst. Solids 352, 5170 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    J.A. Diaz-Guillen, M.R. Diaz-Guillen, J.M. Almanza, A.F. Fuentes, J. Santamaria, C. Leon, J. Phys.: Condens. Matter 19, 356212 (2007)CrossRefGoogle Scholar
  38. 38.
    M.R. Diaz-Guillen, K.J. Moreno, J.A. Diaz-Guillen, A.F. Fuentes, K.L. Ngai, J. Garcia-Barriocanal, J. Santamaria, C. Leon, Phys. Rev. B 78, 104304 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    C. Leon, J. Habasaki, K.L. Ngai, Z. Phys. Chem. 223, 1311 (2009)CrossRefGoogle Scholar
  40. 40.
    Hamiltonian Dynamic Systems, edited by R.S. McKay, J.D. Meiss (Adam Hilger, Bristol, 1987)Google Scholar
  41. 41.
    M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990)Google Scholar
  42. 42.
    K.L. Ngai, Comment Solid State Phys. 9, 141 (1979)Google Scholar
  43. 43.
    K.Y. Tsang, K.L. Ngai, Phys. Rev. E 54, R3067 (1996)ADSCrossRefGoogle Scholar
  44. 44.
    K.Y. Tsang, K.L. Ngai, Phys. Rev. E 56, R17 (1997)ADSCrossRefGoogle Scholar
  45. 45.
    K.L. Ngai, K.Y. Tsang, Phys. Rev. E 60, 4511 (1999)ADSCrossRefGoogle Scholar
  46. 46.
    K.L. Ngai, Relaxation and Diffusion in Complex Systems (Springer, New York, 2011)Google Scholar
  47. 47.
    K.L. Ngai, R.W. Rendell, H. Jain, Phys. Rev. B 30, 2133 (1984)ADSCrossRefGoogle Scholar
  48. 48.
    G. Jarosz, M. Mierzwa, J. Ziozo, M. Paluch, H. Shirota, K.L. Ngai, J. Phys. Chem. B 115, 12709 (2011)CrossRefGoogle Scholar
  49. 49.
    Z. Wojnarowska, C.M. Roland, A. Swiety-Pospiech, K. Grzybowska, M. Paluch, Phys. Rev. Lett. 108, 015701 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    A. Rivera-Calzada, K. Kaminski, C. Leon, M. Paluch, J. Phys. Chem. B 112, 3110 (2008)CrossRefGoogle Scholar
  51. 51.
    K.J. Moreno, G. Mendoza-Suárez, A.F. Fuentes, J. García-Barriocanal, C. León, J. Santamaria, Phys. Rev. B 71, 132301 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    P.J. Wilde, C.R.A. Catlow, Solid State Ion. 112, 173 (1998)CrossRefGoogle Scholar
  53. 53.
    P.J. Wilde, C.R.A. Catlow, Solid State Ion. 112, 185 (1998)CrossRefGoogle Scholar
  54. 54.
    R.E. Williford, W.J. Weber, R. Devanathan, J.D. Gale, J. Electroceram. 3, 409 (1999)CrossRefGoogle Scholar
  55. 55.
    M. Pirzada, R.W. Grimes, L. Minervini, J.F. Maguire, K.E. Sickafus, Solid State Ion. 140, 201 (2001)CrossRefGoogle Scholar
  56. 56.
    F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, J. Phys. Chem. 78, 639 (1974)CrossRefGoogle Scholar
  57. 57.
    Kai-Shiun Chang, Yi-Feng Lin, Kuo-Lun Tung, J. Power Source 196, 9322 (2011)CrossRefGoogle Scholar
  58. 58.
    T.J. Pennycook, M.J. Beck, K. Varga, M. Varela, S.J. Pennycook, S.T. Pantelides, Phys. Rev. Lett. 104, 115901 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    T.J. Pennycook, M.P. Oxley, J. Garcia-Barriocanal, F.Y. Bruno, C. Leon, J. Santamaria, S.T. Pantelides, M. Varela, S.J. Pennycook, Eur. Phys. J. Appl. Phys. 54, 33507 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    R.A. De Souza, A. Ramadan, S. Hörner, Energy Environ. Sci. 5, 5445 (2012)CrossRefGoogle Scholar
  61. 61.
    S. Ramanathan, J. Vac. Sci. Technol. A 27, 1126 (2009)CrossRefGoogle Scholar
  62. 62.
    E. Fabbri, D. Pergolesi, E. Traversa, Sci. Technol. Adv. Mater. 11, 054503 (2010)CrossRefGoogle Scholar
  63. 63.
    P. Mondal, A. Klein, W. Jaegermann, H. Hahn, Solid State Ion. 118, 331 (1999)CrossRefGoogle Scholar
  64. 64.
    J. Maier, Solid State Ion. 131, 13 (2000)ADSCrossRefGoogle Scholar
  65. 65.
    N. Sata, K. Eberman, K. Eberl, J. Maier, Nature 408, 946 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    X. Guo, Science 324, 465.1 (2009)Google Scholar
  67. 67.
    J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 324, 465.2 (2009)Google Scholar
  68. 68.
    J.A. Kilner, Nat. Mater. 7, 838 (2008)ADSCrossRefGoogle Scholar
  69. 69.
    S.K.R.S. Sankaranarayanan, S. Ramanathan, J. Chem. Phys. 134, 064703 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di PisaPisaItaly
  2. 2.Grupo de Física de Materiales ComplejosUniversidad Complutense de MadridMadridSpain

Personalised recommendations