Universality aspects of the trimodal random-field Ising model

Regular Article

Abstract.

We investigate the critical properties of the d = 3 random-field Ising model with an equal-weight trimodal distribution at zero temperature. By implementing suitable graph-theoretical algorithms, we compute large ensembles of ground states for several values of the disorder strength h and system sizes up to N = 1283. Using a new approach based on the sample-to-sample fluctuations of the order parameter of the system and proper finite-size scaling techniques we estimate the critical disorder strength hc = 2.747(3) and the critical exponents of the correlation length ν = 1.34(6) and order parameter β = 0.016(4). These estimates place the model into the universality class of the corresponding Gaussian random-field Ising model.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    Y. Imry, S.-K. Ma, Phys. Rev. Lett. 35, 1399 (1975)ADSGoogle Scholar
  2. 2.
    A. Aharony, Y. Imry, S.-K. Ma, Phys. Rev. Lett. 37, 1364 (1976)ADSGoogle Scholar
  3. 3.
    A.P. Young, J. Phys.: Condens. Matter 10, L257 (1977)Google Scholar
  4. 4.
    S. Fishman, A. Aharony, J. Phys.: Condens. Matter 12, L729 (1979)Google Scholar
  5. 5.
    G. Parisi, N. Sourlas, Phys. Rev. Lett. 43, 744 (1979)ADSGoogle Scholar
  6. 6.
    J.L. Cardy, Phys. Rev. B 29, 505 (1984)ADSGoogle Scholar
  7. 7.
    J.Z. Imbrie, Phys. Rev. Lett. 53, 1747 (1984)ADSGoogle Scholar
  8. 8.
    M. Schwartz, A. Soffer, Phys. Rev. Lett. 55, 2499 (1985)ADSGoogle Scholar
  9. 9.
    M. Schwartz, A. Soffer, Phys. Rev. B 33, 2059 (1986)ADSGoogle Scholar
  10. 10.
    M. Schwartz, J. Phys.: Condens. Matter 18, 135 (1985)Google Scholar
  11. 11.
    M. Schwartz, M. Gofman, T. Nattermann, Physica A 178, 6 (1991)MathSciNetADSGoogle Scholar
  12. 12.
    M. Schwartz, Europhys. Lett. 15, 777 (1994)ADSGoogle Scholar
  13. 13.
    M. Gofman, J. Adler, A. Aharony, A.B. Harris, M. Schwartz, Phys. Rev. Lett. 71, 1569 (1993)ADSGoogle Scholar
  14. 14.
    J. Esser, U. Nowak, Phys. Rev. B 55, 5866 (1997)ADSGoogle Scholar
  15. 15.
    W.C. Barber, D.P. Belanger, J. Magn. Magn. Mater. 226, 545 (2001)ADSGoogle Scholar
  16. 16.
    D.P. Belanger, A.P. Young, J. Magn. Magn. Mater. 100, 272 (1991)ADSGoogle Scholar
  17. 17.
    H. Rieger, in Annual Reviews of Computational Physics II, edited by D. Stauffer (World Scientific, Singapore 1995), pp. 295–341Google Scholar
  18. 18.
    See, e.g., the articles by D.P. Belanger, T. Nattermann in Spin Glasses and Random Fields, edited by A.P. Young (World Scientific, 1998)Google Scholar
  19. 19.
    D.P. Belanger, A.R. King, V. Jaccarino, J.L. Cardy, Phys. Rev. B 28, 2522 (1983)ADSGoogle Scholar
  20. 20.
    D.P. Belanger, Z. Slanič, J. Magn. Magn. Mater. 186, 65 (1998)ADSGoogle Scholar
  21. 21.
    J. Villain, Phys. Rev. Lett. 52, 1543 (1984)ADSGoogle Scholar
  22. 22.
    J. Villain, J. Phys. 46, 1843 (1985)Google Scholar
  23. 23.
    A.J. Bray, M.A. Moore, J. Phys.: Condens. Matter 18, L927 (1985)MathSciNetGoogle Scholar
  24. 24.
    D.S. Fisher, Phys. Rev. Lett. 56, 416 (1986)ADSGoogle Scholar
  25. 25.
    A.N. Berker, S.R. McKay, Phys. Rev. B 33, 4712 (1986)ADSGoogle Scholar
  26. 26.
    J. Bricmont, A. Kupiainen, Phys. Rev. Lett. 59, 1829 (1987)MathSciNetADSGoogle Scholar
  27. 27.
    M.E.J. Newman, B.W. Roberts, G.T. Barkema, J.P. Sethna, Phys. Rev. B 48, 16533 (1993)ADSGoogle Scholar
  28. 28.
    J. Machta, M.E.J. Newman, L.B. Chayes, Phys. Rev. E 62, 8782 (2000)ADSGoogle Scholar
  29. 29.
    M.E.J. Newman, G.T. Barkema, Phys. Rev. E 53, 393 (1996)ADSGoogle Scholar
  30. 30.
    M. Itakura, Phys. Rev. B 64, 012415 (2001)ADSGoogle Scholar
  31. 31.
    N.G. Fytas, A. Malakis, Eur. Phys. J. B 61, 111 (2008)ADSGoogle Scholar
  32. 32.
    A. Aharony, Phys. Rev. B 18, 3318 (1978)ADSGoogle Scholar
  33. 33.
    A. Aharony, Phys. Rev. B 18, 3328 (1978)ADSGoogle Scholar
  34. 34.
    T. Schneider, E. Pytte, Phys. Rev. B 15, 1519 (1977)ADSGoogle Scholar
  35. 35.
    D. Andelman, Phys. Rev. B 27, 3079 (1983)ADSGoogle Scholar
  36. 36.
    S. Galam, J.L. Birman, Phys. Rev. B 28, 5322 (1983)ADSGoogle Scholar
  37. 37.
    V.K. Saxena, Phys. Rev. B 30, 4034 (1984)ADSGoogle Scholar
  38. 38.
    A. Houghton, A. Khurana, F.J. Seco. Phys. Rev. Lett. 55, 856 (1985)ADSGoogle Scholar
  39. 39.
    D.C. Mattis, Phys. Rev. Lett. 55, 3009 (1985)ADSGoogle Scholar
  40. 40.
    M. Kaufman, P.E. Klunzinger, A. Khurana, Phys. Rev. B 34, 4766 (1986)ADSGoogle Scholar
  41. 41.
    R.M. Sebastianes, V.K. Saxena, Phys. Rev. B 35, 2058 (1987)ADSGoogle Scholar
  42. 42.
    A.S. de Arruda, W. Figueiredo, R.M. Sebastianes, V.K. Saxena, Phys. Rev. B 39, 4409 (1989)ADSGoogle Scholar
  43. 43.
    A.A. Middleton, D.S. Fisher, Phys. Rev. B 65, 134411 (2002)ADSGoogle Scholar
  44. 44.
    R.L.C. Vink, T. Fischer, K. Binder, Phys. Rev. E 82, 051134 (2010)ADSGoogle Scholar
  45. 45.
    L.A. Fernández, V. Martín-Mayor, D. Yllanes, Phys. Rev. B 84, 100408(R) (2011)ADSGoogle Scholar
  46. 46.
    N.G. Fytas, A. Malakis, K. Eftaxias, J. Stat. Mech.: Theor. Exp. P03015 (2008)Google Scholar
  47. 47.
    H. Rieger, A.P. Young, J. Phys. A: Math. Gen. 26, 5279 (1993)ADSGoogle Scholar
  48. 48.
    H. Rieger, Phys. Rev. B 52, 6659 (1995)ADSGoogle Scholar
  49. 49.
    A. Falicov, A.N. Berker, S.R. McKay, Phys. Rev. B 51, 8266 (1995)ADSGoogle Scholar
  50. 50.
    M.R. Swift, A.J. Bray, A. Martian, M. Cieplak, J.R. Banavar, Europhys. Lett. 38, 273 (1997)ADSMATHGoogle Scholar
  51. 51.
    J.-C. Anglés d’Auriac, N. Sourlas, Europhys. Lett. 39, 473 (1997)ADSGoogle Scholar
  52. 52.
    N. Sourlas, Comput. Phys. Commun. 121, 183 (1999)ADSGoogle Scholar
  53. 53.
    U. Nowak, K.D. Usadel, J. Esser, Physica A 250, 1 (1998)Google Scholar
  54. 54.
    P.M. Duxbury, J.H. Meinke, Phys. Rev. E 64, 036112 (2001)ADSGoogle Scholar
  55. 55.
    L. Hernández, H. Ceva, Physica A 387, 2793 (2008)ADSGoogle Scholar
  56. 56.
    N. Crokidakis, F.D. Nobre, J. Phys.: Condens. Matter 20, 145211 (2008)ADSGoogle Scholar
  57. 57.
    O.R. Salmon, N. Crokidakis, F.D. Nobre, J. Phys.: Condens. Matter 21, 056005 (2009)ADSGoogle Scholar
  58. 58.
    I.A. Hadjiagapiou, Physica A 390, 2229 (2011)ADSGoogle Scholar
  59. 59.
    I.A. Hadjiagapiou, Physica A 390, 3204 (2011)ADSGoogle Scholar
  60. 60.
    I.A. Hadjiagapiou, Physica A 391, 3541 (2012)ADSGoogle Scholar
  61. 61.
    Ü. Akinci, Y. Yüksel, H. Polat, Phys. Rev. E 83, 061103 (2011)ADSGoogle Scholar
  62. 62.
    M. Tissier, G. Tarjus, Phys. Rev. Lett. 107, 041601 (2011)ADSGoogle Scholar
  63. 63.
    R. Brout, Phys. Rev. 115, 824 (1959)MathSciNetADSMATHGoogle Scholar
  64. 64.
    K. Binder, A.P. Young, Rev. Mod. Phys. 58, 837 (1986)Google Scholar
  65. 65.
    I. Dayan, M. Schwartz, A.P. Young, J. Phys.: Condens. Matter 26, 3093 (1993)Google Scholar
  66. 66.
    S. Wiseman, E. Domany, Phys. Rev. E 52, 3469 (1995)ADSGoogle Scholar
  67. 67.
    A. Aharony, A.B. Harris, Phys. Rev. Lett. 77, 3700 (1996)ADSGoogle Scholar
  68. 68.
    K. Eichhorn, K. Binder, J. Phys.: Condens. Matter 8, 5209 (1996)ADSGoogle Scholar
  69. 69.
    F. Pázmándi, R. Scalettar, G.T. Zimányi, Phys. Rev. Lett. 79, 5130 (1997)Google Scholar
  70. 70.
    S. Wiseman, E. Domany, Phys. Rev. Lett. 81, 22 (1998)ADSGoogle Scholar
  71. 71.
    H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo, Phys. Rev. B 58, 2740 (1998)ADSGoogle Scholar
  72. 72.
    Y. Tomita, Y. Okabe, Phys. Rev. E 64, 036114 (2001)ADSGoogle Scholar
  73. 73.
    G. Parisi, N. Sourlas, Phys. Rev. Lett. 89, 257204 (2002)ADSGoogle Scholar
  74. 74.
    G. Parisi, M. Picco, N. Sourlas, Europhys. Lett. 66, 465 (2004)ADSGoogle Scholar
  75. 75.
    P.E. Berche, C. Chatelain, B. Berche, W. Janke, Eur. Phys. J. B 38, 463 (2004)ADSGoogle Scholar
  76. 76.
    C. Monthus, T. Garel, Eur. Phys. J. B 48, 393 (2005)ADSGoogle Scholar
  77. 77.
    A. Malakis, N.G. Fytas, Phys. Rev. E 73, 016109 (2006)ADSGoogle Scholar
  78. 78.
    Y. Wu, J. Machta, Phys. Rev. Lett. 95 137208 (2005)ADSGoogle Scholar
  79. 79.
    Y. Wu, J. Machta, Phys. Rev. B 74, 064418 (2006)ADSGoogle Scholar
  80. 80.
    A. Gordillo-Guerrero, J.J. Ruiz-Lorenzo, J. Stat. Mech.: Theor. Exp., P0601 (2007)Google Scholar
  81. 81.
    N.G. Fytas, A. Malakis, Phys. Rev. E 81, 041109 (2010)ADSGoogle Scholar
  82. 82.
    A. Efrat, M. Schwartz, arXiv:cond-mat/0608435Google Scholar
  83. 83.
    A.T. Ogielski, Phys. Rev. Lett. 57, 1251 (1986)ADSGoogle Scholar
  84. 84.
    A.K. Hartmann, K.D. Usadel, Physica A 214, 141 (1995)ADSGoogle Scholar
  85. 85.
    A.K. Hartmann, Physica A 248, 1 (1998)MathSciNetADSGoogle Scholar
  86. 86.
    S. Bastea, P.M. Duxbury, Phys. Rev. E 58, 4261 (1998)ADSGoogle Scholar
  87. 87.
    S. Bastea, Phys. Rev. E 58, 7978 (1998)ADSGoogle Scholar
  88. 88.
    S. Bastea, P.M. Duxbury, Phys. Rev. E 60, 4941 (1999)ADSGoogle Scholar
  89. 89.
    A.K. Hartmann, U. Nowak, Eur. Phys. J. B 7, 105 (1999)ADSGoogle Scholar
  90. 90.
    A.K. Hartmann, A.P. Young, Phys. Rev. B 64, 180404 (2001)ADSGoogle Scholar
  91. 91.
    A.K. Hartmann, Phys. Rev. B 65, 174427 (2002)ADSGoogle Scholar
  92. 92.
    E.T. Seppälä, M.J. Alava, Phys. Rev. E 63, 066109 (2001)ADSGoogle Scholar
  93. 93.
    E.T. Seppälä, M.J. Alava, P.M. Duxbury, Phys. Rev. E 63, 066110 (2001)ADSGoogle Scholar
  94. 94.
    E.T. Seppälä, A.M. Pulkkinen, M.J. Alava, Phys. Rev. B 66, 144403 (2002)ADSGoogle Scholar
  95. 95.
    A.A. Middleton, Phys. Rev. Lett. 88, 017202 (2002)ADSGoogle Scholar
  96. 96.
    A.A. Middleton, arXiv:cond-mat/0208182Google Scholar
  97. 97.
    J.H. Meinke, A.A. Middleton, arXiv:cond-mat/0502471Google Scholar
  98. 98.
    D.C. Hambrick, J.H. Meinke, A.A. Middleton, arXiv:cond-mat/0501269Google Scholar
  99. 99.
    I. Dukovski, J. Machta, Phys. Rev. B 67, 014413 (2003)ADSGoogle Scholar
  100. 100.
    M.J. Alava, P.M. Duxbury, C.F. Moukarzel, H. Rieger, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press, San Diego, 2001), Vol. 18Google Scholar
  101. 101.
    M. Zumsande, M.J. Alava, A.K. Hartmann, J. Stat. Mech.: Theor. Exp., P02012 (2008)Google Scholar
  102. 102.
    G.P. Shrivastav, S. Krishnamoorthy, V. Banerjee, S. Puri, Europhys. Lett. 96, 36003 (2011)ADSGoogle Scholar
  103. 103.
    B. Ahrens, A.K. Hartmann, Phys. Rev. B 83, 014205 (2011)ADSGoogle Scholar
  104. 104.
    B. Ahrens, A.K. Hartmann, Phys. Rev. B 84, 144202 (2011)ADSGoogle Scholar
  105. 105.
    B. Ahrens, A.K. Hartmann, Phys. Rev. B 85, 224421 (2012)ADSGoogle Scholar
  106. 106.
    J.D. Stevenson, M. Weigel, Europhys. Lett. 95, 40001 (2011)ADSGoogle Scholar
  107. 107.
    J.D. Stevenson, M. Weigel, Comput. Phys. Commun. 182, 1879 (2011)ADSMATHGoogle Scholar
  108. 108.
    J.-C. Anglés d’Auriac, M. Preissmann, R. Rammal, J. Phys. Lett. 46, L173 (1985)Google Scholar
  109. 109.
    T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction To Algorithms (MIT Press, Cambridge, MA, 1990)Google Scholar
  110. 110.
    C.H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1994)Google Scholar
  111. 111.
    A.K. Hartmann, H. Rieger, Optimization Algorithms in Physics (Wiley-VCH, Berlin, 2004)Google Scholar
  112. 112.
    A.K. Hartmann, M. Weigt, Phase Transitions in Combinatorial Optimization Problems (Wiley-VCH, Berlin, 2005)Google Scholar
  113. 113.
    A.V. Goldberg, R.E. Tarjan, J. Assoc. Comput. Mach. 35, 921 (1988)MathSciNetMATHGoogle Scholar
  114. 114.
    B.V. Cherkassky, A.V. Goldberg, Algorithmica 19, 390 (1997)MathSciNetMATHGoogle Scholar
  115. 115.
    M.N. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic, NY, 1983)Google Scholar
  116. 116.
    O. Melchert, arXiv:0910.5403Google Scholar
  117. 117.
    J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)MATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Departamento de Física Teórica IUniversidad ComplutenseMadridSpain
  2. 2.Faculty of PhysicsUniversity of ViennaViennaAustria
  3. 3.Institute for Theoretical Physics and Center for Computational Materials ScienceVienna University of TechnologyViennaAustria
  4. 4.Vienna Computational Materials LaboratoryViennaAustria

Personalised recommendations