Quantum entanglement in heterometallic wheels

  • Ilaria Siloi
  • Filippo Troiani
Regular Article
Part of the following topical collections:
  1. Topical issue: New Trends in Magnetism and Magnetic Materials


Molecular nanomagnets are widely engineerable, low-dimensional spin systems, and typically exhibit strongly correlated ground states. This makes them an ideal playground for investigating quantum entanglement. Here, we present a theoretical investigation of entanglement in a relevant class of nanomagntes, namely the Cr-based wheels. We use exchange energy as a simple means for detecting spin-pair and multi-spin entanglement, and derive the temperature range where such correlations are present in the equilibrium state of the molecules.


Entangle State Exchange Energy Threshold Temperature Spin Pair Multipartite Entanglement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Gatteschi, R. Sessoli, J. Villain, Molecular nanomagnets (Oxford University Press, Oxford, 2007)Google Scholar
  2. 2.
    M. Affronte, S. Carretta, G.A. Timco, R.E.P. Winpenny, Chem. Commun. 18, 1789 (2007)CrossRefGoogle Scholar
  3. 3.
    F.K. Larsen et al., Angew. Chem. Int. Ed. 42, 101 (2003)CrossRefGoogle Scholar
  4. 4.
    G.A. Timco et al., Nat. Nanotechnol. 4, 173 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    A. Candini et al., Phys. Rev. Lett. 104, 037203 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    V. Bellini, G. Lorusso, A. Candini, W. Wernsdorfer, T.B. Faust, G.A. Timco, R.E.P. Winpenny, M. Affronte, Phys. Rev. Lett. 106, 227205 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    G. Vitagliano, P. Hyllus, I. Egusquiza, G. Tóth, Phys. Rev. Lett. 107, 240502 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    J. van Slageren et al., Chem. Eur. J. 8, 277 (2002)CrossRefGoogle Scholar
  11. 11.
    R. Caciuffo, T. Guidi, G. Amoretti, S. Carretta, E. Liviotti, P. Santini, C. Mondelli, G. Timco, C.A. Muryn, R.E.P. Winpenny, Phys. Rev. B 71, 174407 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    V. Bellini, M. Affronte, J. Phys. Chem. B 114, 14797 (2010)CrossRefGoogle Scholar
  13. 13.
    F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, R.E.P. Winpenny, Phys. Rev. Lett. 94, 207208 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    C. Brukner, V. Vedral, arXiv:quant-ph/0406040 (2004)Google Scholar
  15. 15.
    M.R. Dowling, A.C. Doherty, S.D. Bartlett, Phys. Rev. A 70, 062113 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    F. Troiani, I. Siloi, Phys. Rev. A 86, 032330 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    F. Troiani, Phys. Rev. A 83, 022324 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Wieśniak, V. Vedral, C. Brukner, New J. Phys. 7, 258 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    G. Tóth, Phys. Rev. A 71, 010301 (2005)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    I. Siloi, F. Troiani, Phys. Rev. B 86, 224404 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    O. Gühne, G. Tóth, H.J. Briegel, New J. Phys. 7, 229 (2005)CrossRefGoogle Scholar
  22. 22.
    O. Waldmann, T. Guidi, S. Carretta, C. Mondelli, A.L. Dearden, Phys. Rev. Lett. 91, 237202 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    G. Lorusso, V. Corradini, A. Ghirri, R. Biagi, U. del Pennino, I. Siloi, F. Troiani, G.A. Timco, R.E.P. Winpenny, M. Affronte, Phys. Rev. B 86, 184424 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Dipartimento di Scienze Fisiche, Informatiche e MatematicheUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.S3 Istituto Nanoscienze-CNRModenaItaly

Personalised recommendations