Possible condensation of Frenkel exciton polaritons in an organic nanofiber

  • Jun-ichi Inoue
Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials


We theoretically investigate a phase transition of Frenkel exciton polaritons in an organic nanofiber. Assuming a phenomenological Hamiltonian, we derive a mean field equation for the condensation after finding an effective action for the phenomenon using the functional integral method and stationary phase analysis. From a solution of the mean field equation, we construct a phase diagram for the condensation and highlight features that distinguish J- and H-aggregates. We also detail a connection with the superradiant phase transition, which has been studied using the Dicke model.


Frenkel Exciton Exciton Migration Functional Integral Method Stationary Phase Analysis Wannier Exciton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    H. Deng, H. Haug, Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    K. Takazawa, J. Inoue, K. Mitsuishi, T. Takamasu, Phys. Rev. Lett. 105, 067401 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    K. Takazawa, K. Mitsuishi, J. Inoue, Appl. Phys. Lett. 99, 253302 (2011) CrossRefGoogle Scholar
  4. 4.
    K. Takazawa, J. Inoue, K. Mitsuishi, Adv. Mater. 23, 3659 (2011) CrossRefGoogle Scholar
  5. 5.
    A. Imamogulu, R.J. Ram, S. Pau, Y. Yamamoto, Phys. Rev. A 53, 4250 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    J.Q. Negele, H. Orland, Quantum Many-particle Physics (Addison-Wesley, New York, 1988)Google Scholar
  7. 7.
    N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, Berlin, 1999)Google Scholar
  8. 8.
    P.R. Eastham, M.H. Szymanska, P.B. Littewood, Solid State Commun. 127, 117 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    R.H. Dicke, Phys. Rev. 93, 99 (1954)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    V.N. Popov, S.A. Fedotov, Sov. Phys. JETP 67, 536 (1988)Google Scholar
  11. 11.
    M. Alcalde, A.L.L. Le Lemos, N.F. Svaiter, J. Phys. A 40, 11961 (2007) MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    D.J. Amit, H. Keiter, J. Low Temp. Phys. 11, 603 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    J. Inoue, J. Phys. A 45, 305003 (2012) CrossRefGoogle Scholar
  14. 14.
    Y.K. Wang, F.T. Hioe, Phys. Rev. A 7, 831 (1973)ADSCrossRefGoogle Scholar
  15. 15.
    K. Heap, E. Liep, Ann. Phys. 76, 360 (1973)ADSCrossRefGoogle Scholar
  16. 16.
    P.R. Eastham, P. Littlewood, Phys. Rev. B 64, 235101 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    P. Nataf, C. Ciuti, Nat. Comm. 1, 72 (2010)CrossRefGoogle Scholar
  18. 18.
    O. Viehmann, J. Von Delft, F. Marquardt, Phys. Rev. Lett. 107, 113602 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations