Intra- and inter-tube exciton relaxation dynamics in high purity semiconducting and metallic single-walled carbon nanotubes

  • Masao Ichida
  • Shingo Saito
  • Yasumitsu Miyata
  • Kazuhiro Yanagi
  • Hiromichi Kataura
  • Hiroaki Ando
Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials


We have measured the exciton and carrier dynamics in the high purity semiconducting (S-) and metallic (M-) single-walled carbon nanotubes (SWNTs) in the isolated and aggregated (bundled) forms. The exciton relaxation decay times are measured by using the pump-probe spectroscopy. For bundled samples, the relaxation time becomes shorter than that for isolated SWNTs sample, because of the existence of inter-tube relaxation. We estimate the relaxation rates from S-SWNT to S-SWNT and S-SWNT to M-SWNT using the decay times for isolated SWNTs, high purity S-SWNTs bundle, and doped S-SWNTs in high purity M-SWNTs bundle. For S-SWNTs, inter-tube relaxation plays an important role in the relaxation dynamics. However, for M-SWNTs, the inter-tube relaxation is not so important, and the transition energy and intensity of exciton in M-SWNTs is strongly affected by the photoexcited carriers which plays like as photo doping.


Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials. Guest editors: Maria Antonietta Loi, Jasper Knoester and Paul H. M. van Loosdrecht 


  1. 1.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, M.C. Hersam, Nat. Nanotechnol. 1, 60 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Miyata, K. Yanagi, Y. Maniwa, T. Tanaka, H. Kataura, J. Phys. Chem. C 112, 15997 (2008)CrossRefGoogle Scholar
  4. 4.
    P. Ayala, Y. Miyata, K. De Blauwe, H. Shiozawa, Y. Feng, K. Yanagi, C. Kramberger, S.R.P. Silva, R. Follath, H. Kataura, T. Pichler, Phys. Rev. B 80, 205427 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    F. Wang, G. Dukovic, E. Knoesel, L.E. Brus, T.F. Heinz, Phys. Rev. B 70, 241403 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Y.-Z. Ma, L. Valkunas, S.L. Dexheimer, S.M. Bachilo, G.R. Fleming, Phys. Rev. Lett. 94, 157402 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    T. Koyama, K. Asaka, N. Hikosaka, H. Kishida, Y. Saito, A. Nakamura, J. Phys. Chem. Lett. 2, 127 (2011)CrossRefGoogle Scholar
  8. 8.
    L. Lüer, J. Crochet, T. Hertel, G. Cerullo, G. Lanzani, ACS Nano 4, 4265 (2010)CrossRefGoogle Scholar
  9. 9.
    H. Qian, C. Georgi, M. Anderson, A.A. Green, M.C. Hersam, L. Novotny, A. Hartschuh, Nano Lett. 8, 1363 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    T. Hertel, G. Moos, Phys. Rev. Lett. 84, 5002 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    T. Hertel, R. Fasel, G. Moos, Appl. Phys. A 75, 449 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    M. Ichida, I. Umezu, H. Kataura, M. Kimura, S. Suzuki, Y. Achiba, H. Ando, J. Lumin. 112, 287 (2005)CrossRefGoogle Scholar
  13. 13.
    Y. Miyauchi, private communicationGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Masao Ichida
    • 1
  • Shingo Saito
    • 2
  • Yasumitsu Miyata
    • 3
  • Kazuhiro Yanagi
    • 4
  • Hiromichi Kataura
    • 5
  • Hiroaki Ando
    • 1
  1. 1.Department of PhysicsKonan UniversityKobeJapan
  2. 2.National Institute for Information and Communications TechnologyKobeJapan
  3. 3.Department of Chemistry, Faculty of ScienceNagoya UniversityNagoyaJapan
  4. 4.Department of Physics, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
  5. 5.Nanotechnology Research InstituteAdvanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations