Advertisement

First-principles study of elastic and structural properties of Zr3Al3C5

  • W. Feng
  • C.Q. Xu
  • S. CuiEmail author
  • H. Hu
  • G.Q. Zhang
  • Z.T. Lv
Regular Article

Abstract

The elastic and structural properties of Zr3Al3C5 have been investigated by means of first-principles pseudopotential total energy method. The lattice constants and internal parameters of atoms are in agreement with the available results. The pressure dependence with the elastic constants indicates Zr3Al3C5 possesses mechanical stability in the pressure range 0–40 GPa. The calculated Cauchy pressure and ratio of bulk modulus to shear modulus reveal that Zr3Al3C5 is intrinsically brittle in nature at zero pressure. Moreover, we derived the bulk and shear moduli, Young’s moduli and Poisson’s ratio from elastic constants for Zr3Al3C5. The variations of Debye temperature with pressure were estimated from the pressure dependence with average sound velocity.

Keywords

Solid State and Materials 

References

  1. 1.
    J.C. Schuster, H. Nowotny, Z. Metallkd 71, 341 (1980)Google Scholar
  2. 2.
    J.Y. Wang, Y.C. Zhou, Annu. Rev. Mater. Sci. Res. 39, 415 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    T.M. Gesing, W. Jeitschko, J. Solid State Chem. 140, 396 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    U. Leela-Adisorn, S.M. Choi, N. Tera, T. Takeuchi, S. Hashimoto, S. Honda, H. Awaji, K. Hayakawa, A. Yamaguchi, J. Ceram. Soc. Jpn 113, 188 (2005)CrossRefGoogle Scholar
  5. 5.
    J.Y. Wang, Y.C. Zhou, Z.J. Lin, T. Liao, L. F. He, Phys. Rev. B 73, 134107 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    J.Y. Wang, Y.C. Zhou, Z.J. Lin, T. Liao, Phys. Rev. B 72, 052102 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Z.J. Lin, M.J. Zhuo, L.F. He, Y.C. Zhou, M.S. Li, J.Y. Wang, Acta Mater. 54, 3843 (2006)CrossRefGoogle Scholar
  8. 8.
    L.F. He, J.Y. Wang, Y.W. Bao, Y.C. Zhou, J. Appl. Phys. 102, 043531 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter 14, 2717 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    T.H. Fischer, J. Almlof, J. Phys. Chem. 96, 9768 (1992)CrossRefGoogle Scholar
  14. 14.
    F.D. Murnaghan, Finite Deformation of an Elastic Solid (John Wiley, New York, 1951)Google Scholar
  15. 15.
    F. Birch, J. Geophys. Res. 83, 1257 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    W. Voigt, Lehrbuch der Kristallphysik (Taubner, Leipzig, 1928)Google Scholar
  17. 17.
    A. Reuss, Z. Angew. Math. Mech. 9, 55 (1929)CrossRefGoogle Scholar
  18. 18.
    R. Hill, Proc. Phys. Soc. London 65, 350 (1952)ADSGoogle Scholar
  19. 19.
    S.F. Pugh, Philos. Mag. 45, 823 (1954)Google Scholar
  20. 20.
    S.X. Cui, W.X. Feng, H.Q. Hu, Z.B. Feng, H. Liu, Scripta Mater. 61, 576 (2009)CrossRefGoogle Scholar
  21. 21.
    G.V. Sin’ko, N.A. Smirnov, J. Phys. Condens. Matt. 14, 6989 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)ADSCrossRefGoogle Scholar
  23. 23.
    E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and their Measurements (McGraw-Hill, New York, 1973)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • W. Feng
    • 1
  • C.Q. Xu
    • 2
  • S. Cui
    • 1
    Email author
  • H. Hu
    • 1
  • G.Q. Zhang
    • 1
  • Z.T. Lv
    • 1
  1. 1.School of Physics Science and Information TechnologyLiaocheng UniversityLiaochengP.R. China
  2. 2.School of PhysicsLiaoning UniversityShenyangP.R. China

Personalised recommendations