New hexagonal structure for silicon atoms

  • S. Naji
  • A. Belhaj
  • H. Labrim
  • A. Benyoussef
  • A. El KenzEmail author
Regular Article


Motivated by recent experimental and theoretical works on silicene and its derived materials and based on the exceptional Lie algebra G2 we propose a new hexagonal symmetry producing the (√3 × √3)R30° superstructure for silicon atoms. The principal hexagonal unit cell contains twelve atoms instead of the usual structure involving only six ones and it is associated with the G2 root system. In this silicon atom configuration appears two hexagons of unequal side length at angle 30°. This atomic structure can be tessellated to exhibit two superstructures (1 × 1) and (√3 × √3)R30° on the same atomic sheet. To test this double hexagonal structure, we perform a numerical study using Ab-initio calculations based on FPLO9.00-34 code. We observe that the usual silicon electronic properties and the lattice parameters of planar geometry are modified. In particular, the corresponding material becomes a conductor rather than zero gaped semi-conductor arising in single hexagonal structure. Although the calculation is done for silicon atoms, we expect that this structure could be adapted to all two dimensional materials having a single hexagonal flat geometry.


Solid State and Materials 


  1. 1.
    K.S. Novoselov, A.K. Giem, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    A. Kara, C. Léandri, M.E. Davila, P. De Padova, B. Ealet, H. Oughaddou, B. Aufray, G. Le Lay, J. Supercond. Novel Magn. 22, 259 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Kara, H. Enriquez, A.P. Seitsonen, L.C. Lew, Y. Voon, S. Vizzini, B. Aufray, H. Oughaddou, Surf. Sci. Rep. 67, 1 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    P. Vogt et al., Phys. Rev. Lett. 108, 155501 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    H. Behera, G. Mukhopadhyay, AIP Conf. Proc. 1313, 152 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    S.J. Rey, Prog. Theor. Phys. Suppl. 177, 128 (2009)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    M.A. Akhukov, A. Fasolino, Y.N. Gornostyrev, M.I. Katsnelson, Phys. Rev. B 85, 115407 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    S. Konschuh, M. Gmitra, D. Kochan, J. Fabian, Phys. Rev. B 85, 115423 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    L.B. Drissi, E.H. Saidi, M. Bousmina, Nucl. Phys. B 829, 523 (2010)MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    L. Chen, C.C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 109, 056804 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    C. Mathieu, B. Lalmi, T.O. Mentes, E. Pallecchi, A. Locatelli, S. Latil, R. Belkhou, A. Ouerghi, Phys. Rev. B 86, 035435 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    S. Lebegue, O. Eriksson, Phys. Rev. B 79, 115409 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J.E. Humphreys, Introduction to Lie Algebras and Representation Theory (Sauteur-Verlag, New York, 1978)Google Scholar
  20. 20.
    L.J. Boya, R. Acad. Ciencias de Zaragoza 29, 37 (2006)MathSciNetGoogle Scholar
  21. 21.
    N. Papadopoulos, P.K. Townsend, Phys. Lett. B 380, 273 (1996)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    A. Belhaj, J. Phys. A 35, 8903 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. 23.
    A. Belhaj, J. Phys. A 36, 4191 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    A. Belhaj, M.P. Garcia del Moral, A. Restuccia, A. Segui, J.P. Veiro, J. Phys. A 425, 325201 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A. Belhaj, M.P. Garcia del Moral, J. Phys. A 38, 2773 (2005)MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. 26.
    D.D. Joyce, Compact Manifolds of Special Holonomy (Oxford University Press, Inc., New York, 2000)Google Scholar
  27. 27.
    K. Koepernik, H. Eschrig, Phys. Rev. B 59, 1743 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    O. Lagerstedt, B. Monemar, Phys. Rev. B 19, 3064 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    B. Baranowski, S. Majchrzak, T.B. Flangan, J. Phys. F: Met. Phys. 1, 258 (1991)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Naji
    • 1
    • 2
  • A. Belhaj
    • 3
    • 4
  • H. Labrim
    • 3
  • A. Benyoussef
    • 1
    • 5
    • 6
  • A. El Kenz
    • 1
    Email author
  1. 1.LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V-AgdalRabatMorocco
  2. 2.Department of PhysicsFaculty of Science, Ibb UniversityIbbYemen
  3. 3.Centre National de l’Energie, des Sciences et des Techniques NucléairesRabatMorocco
  4. 4.Centre of Physics and Mathematics, CPM-CNESTENRabatMorocco
  5. 5.Institute of Nanomaterials and Nanotechnology, MAScIRRabatMorocco
  6. 6.Hassan II Academy of Science and TechnologyRabatMorocco

Personalised recommendations