Enhancement effects on excitonic photoluminescence intensity originating from misaligned crystal blocks and polycrystalline grains in a ZnO wafer

  • Hideo Takeuchi
Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials


We have systematically investigated a relation between excitonic photoluminescence intensity and crystal quality in a (0001)-oriented ZnO wafer. We visualize the crystal quality of a whole wafer using a circular polariscopic measurement and a reflection-type X-ray topograph measurement. The reflection-type X-ray topograph exhibits regions of grain-like patterns that result from internal strains. The circular polariscopic map shows that the internal strains induce local stresses. The θ-2θ X-ray diffraction pattern indicates the presence of misaligned crystal blocks and polycrystalline grains. We have measured photoluminescence spectra and found that the presence of misaligned crystal blocks and polycrystalline grains leads to enhancement of the excitonic photoluminescence intensity. The present phenomenon is attributed to the suppression of exciton diffusion caused by the grain and domain boundaries that connect with the grain-like patterns in the X-ray topograph.


Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials. Guest editors: Maria Antonietta Loi, Jasper Knoester and Paul H. M. van Loosdrecht 


  1. 1.
    J.I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971)Google Scholar
  2. 2.
    C.F. Klingshirn, Semiconductor Optics, 3rd edn. (Springer-Verlag, Berlin, 2007)Google Scholar
  3. 3.
    M. Kato, H. Ono, M. Ichimura, G. Feng, T. Kimoto, Jpn J. Appl. Phys. 50, 036603 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    S. Shirakata, S. Yudate, J. Honda, N. Iwado, Jpn J. Appl. Phys. 50, 05FC02 (2011)CrossRefGoogle Scholar
  5. 5.
    W.K. Chim, Semiconductor Devices and Failure Analysis Using Photon Emission Microscopy (John Wiley & Sons, New York, 2000)Google Scholar
  6. 6.
    G. Cloud, Optical Methods of Engineering Analysis (Cambridge University Press, Cambridge, 1994), Chap. 4Google Scholar
  7. 7.
    E.E. Wahlstrom, Optical Crystallography (John Wiley & Sons, New York, 1951)Google Scholar
  8. 8.
    V.P. Kompaneitsev, Crystallogr. Rep. 51, 640 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, 1978)Google Scholar
  10. 10.
    H. Takeuchi, Rev. Sci. Instrum. 82, 033907 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Zinc Oxide, edited by C.F. Klingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurts (Springer, Berlin, 2010), p. 9Google Scholar
  12. 12.
    International Tables for Crystallography, edited by T. Hahn, 4th edn. (Kluwer Academic Publishers, Boston, 1995), Vol. A, p. 574Google Scholar
  13. 13.
    R.L. Weiher, W.C. Tait, Phys. Rev. B 5, 623 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    G. Tobin, E. McGlynn, M.O. Henry, J.-P. Mosnier, E. de. Posada, J.G. Lunny, Appl. Phys. Lett. 88, 071919 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Reference [11], p. 235Google Scholar
  16. 16.
    D.W. Hamby, D.A. Lucca, M.J. Klopfstein, G. Cantwell, J. Appl. Phys. 93, 3214 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    W. Shan, W. Walukiewicz, J.W. Ager III, K.M. Yu, H.B. Yuan, H.P. Xin, G. Cantwell, J.J. Song, Appl. Phys. Lett. 86, 191911 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    L. Wang, N.C. Giles, J. Appl. Phys. 94, 973 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    S. Yamamoto, H. Sakuma, T. Mishina, Jpn J. Appl. Phys. 49, 121102 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    A. Yamamoto, Y. Moriwaki, K. Hattori, H. Yanagi, Appl. Phys. Lett. 98, 061907 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronic Systems Engineering, School of EngineeringThe University of Shiga PrefectureShigaJapan

Personalised recommendations