Advertisement

Optical and photocatalytic properties of two-dimensional MoS2

  • N. Singh
  • G. Jabbour
  • U. SchwingenschlöglEmail author
Regular Article

Abstract

The electronic structure and optical spectrum of monolayer MoS2 are calculated using both the modified Becke-Johnson (mBJ) approximation and Bethe-Salpeter equation. Bulk MoS2 is an indirect band gap semiconductor, but thinned to a monolayer it converts to a direct band gap semiconductor with increased gap. The calculated mBJ band gaps of MoS2 amount to 1.15 eV for the bulk and 1.90 eV for the monolayer, in excellent agreement with experiment. The experimental excitonic peaks of monolayer MoS2 at 1.88 eV and 2.06 eV are reproduced by the calculations. The high photoluminescence yield can be attributed to a high binding energy of the excitons and is not due to a splitting of the valence bands, as is commonly assumed. We also show that monolayer MoS2 has the ability to oxidize H2O and produce O2 as well as to reduce H+ to H2.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, Phys. Rev. B 35, 6203 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    W. Schockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)ADSCrossRefGoogle Scholar
  3. 3.
    G.S. Calabrese, M.S. Wrighton, J. Am. Chem. Soc. 103, 6273 (1981)CrossRefGoogle Scholar
  4. 4.
    K.K. Kam, B.A. Parkinson, J. Phys. Chem. 86, 463 (1982)CrossRefGoogle Scholar
  5. 5.
    R.A. Simon, A.J. Ricco, D.J. Harrison, M.S. Wrighton, J. Phys. Chem. 87, 4446 (1983)CrossRefGoogle Scholar
  6. 6.
    C.R. Cabrera, H.D. Abruna, J. Electrochem. Soc. 135, 1436 (1988)CrossRefGoogle Scholar
  7. 7.
    Y. Kim, J.L. Huang, C.M. Lieber, Appl. Phys. Lett. 59, 3404 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    J.P. Wilcoxon, P.P. Newcomer, G.A. Samara, J. Appl. Phys. 81, 7934 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    E. Fortin, W. Sears, J. Phys. Chem. Solids 43, 881 (1982)ADSCrossRefGoogle Scholar
  10. 10.
    A. Fujishima, K. Honda, Nature 238, 37 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11, 5111 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, C.N.R. Rao, Angew. Chem. Int. Ed. 49, 4059 (2010)CrossRefGoogle Scholar
  15. 15.
    R.F. Frindt, A.D. Yoffe, Proc. R. Soc. Lond. A 273, 69 (1963)ADSCrossRefGoogle Scholar
  16. 16.
    B.L. Evans, P.A. Young, Proc. R. Soc. Lond. A 284, 402 (1965)ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Wilson, A.D. Yoffe, Adv. Phys. 18, 193 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    R.A. Neville, B.L. Evans, Phys. Stat. Sol. B 73, 597 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    G.L. Frey, S. Elani, M. Homyonfer, Y. Feldman, R. Tenne, Phys. Rev. B 57, 6666 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    J.P.W. Newcomer, G.A. Samara, J. Appl. Phys. 81, 7934 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    W. Hanke, L.J. Sham, Phys. Rev. B 21, 4656 (1980)ADSCrossRefGoogle Scholar
  22. 22.
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Phys. Rev. Lett. 92, 077402 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, Science 308, 838 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    B. Arnaud, S. Lebégue, P. Rabiller, M. Alouani, Phys. Rev. Lett. 96, 026402 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    L. Wirtz, A. Marini, M. Gruning, G. Kresse, A. Rubio, Phys. Rev. Lett. 100, 189701 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    H.C. Hsueh, G.Y. Guo, S.G. Louie, Phys. Rev. B 84, 85404 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    L. Yang, C.H. Park, J. Deslippe, S.G. Louie, Phys. Rev. Lett. 103, 186802 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    V.G. Kravets, A.N. Grigorenko, R.R. Nair, P. Blake, S. Anissimova, K.S. Novoselov, A.K. Geim, Phys. Rev. B 81, 155413 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    K.F. Mak, J. Shan, T.F. Heinz, Phys. Rev. Lett. 106, 046401 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)CrossRefGoogle Scholar
  33. 33.
    S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.-S. Kang, J. Baik, H.J. Shin, S.C. Hong, Phys. Rev. B 84, 17 (2011)Google Scholar
  34. 34.
    F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (TU Vienna, Vienna, 2001)Google Scholar
  36. 36.
    U. Schwingenschlögl, C. Schuster, Phys. Rev. Lett. 99, 237206 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    U. Schwingenschlögl, C. Schuster, Europhys. Lett. 79, 27003 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    U. Schwingenschlögl, C. Schuster, R. Frésard, Europhys. Lett. 81, 27002 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    U. Schwingenschlögl, C. Schuster, R. Frésard, Europhys. Lett. 88, 67008 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    N. Singh, U. Schwingenschlögl, Chem. Phys. Lett. 508, 29 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    N. Singh, S.M. Saini, T. Nautiyal, S. Auluck, J. Appl. Phys. 100, 083525 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    S. Sharma, J.K. Dewhurst, A. Sanna, E.K.U. Gross, Phys. Rev. Lett. 107, 186401 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, A. Wold, Phys. Rev. B 35, 6195 (1987)ADSCrossRefGoogle Scholar
  44. 44.
    Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlögl, Phys. Rev. B 84, 153402 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    A.H. Nethercot, Phys. Rev. Lett. 33, 1088 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    J.J. Liu, X.L. Fu, S.F. Chen, Y.F. Zhu, Appl. Phys. Lett. 99, 191903 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    D.J. Wanga, Z.H. Li, Y.L. Ana, Y.J. Huang, L.Z. Wuc, J. Shen, Int. J. Hydrogen Energy 37, 8240 (2012)CrossRefGoogle Scholar
  48. 48.
    J. Cao, B. Xu, H. Lin, B. Luo, S. Chen, Dalton Trans. 41, 11482 (2012)CrossRefGoogle Scholar
  49. 49.
    B.L. Abrams, J.P. Wilcoxon, Crit. Rev. Solid State Mater. Sci. 30, 153 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physical Science & Engineering Division, KAUSTThuwalKingdom of Saudi Arabia
  2. 2.Solar and Photovoltaic Energy Research Center (SPERC), KAUSTThuwalKingdom of Saudi Arabia

Personalised recommendations