Recombination of two triplet excitons in conjugated polymers

  • Y. Meng
  • B. Di
  • Y. D. Wang
  • X. J. Liu
  • Z. An
Regular Article
Part of the following topical collections:
  1. Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials


Combining the one-dimensional tight-binding Su-Schrieffer-Heeger (SSH) model including interchain interactions and the extended Hubbard model (EHM), we investigate the recombination processes between two triplet excitons in conjugated polymers using a nonadiabatic evolution method. Due to the interchain coupling, the electron and/or hole in the two triplet excitons can exchange, and new species are formed. Depending on the interchain coupling and electron-electron interactions, it is found that the main product is excited-polaron state in which two electrons and a hole (or two holes and an electron) are bound together in a lattice deformation, with a small amount of singlet exciton, biexciton and bipolaron. In these products, the excited polaron, the singlet exciton and the biexciton can contribute to the emission. The results indicate that the recombination of two triplet excitons may play an important role in polymer light-emitting diodes.


Topical issue: Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials. 


  1. 1.
    J. Shinar, R. Shinar, J. Phys. D: Appl. Phys. 41, 133001 (2008) ADSCrossRefGoogle Scholar
  2. 2.
    Z. Shuai, D. Beljonne, R.J. Silbey, J.L. Brédas, Phys. Rev. Lett. 84, 131 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    D. Beljonne, A. Ye, Z. Shuai, J.L. Brédas, Adv. Funct. Mater. 14, 684 (2004)CrossRefGoogle Scholar
  4. 4.
    W. Barford, Phys. Rev. B 70, 205204 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    K. Tandon, S. Ramasesha, S. Mazumdar, Phys. Rev. B 67, 045109 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    S. Karabunarliev, E.R. Bittner, Phys. Rev. Lett. 90, 057402 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Meng, X.J. Liu, B. Di, Z. An, J. Chem. Phys. 131, 244502 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    Z. Sun, Y. Li, S.J. Xie, Z. An, D.S. Liu, Phys. Rev. B 79, 201310(R) (2009) ADSGoogle Scholar
  9. 9.
    L. Gu, S. Li, T.F. George, X. Sun, Phys. Status Solidi B 248, 1490 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    S. Li, G.P. Tong, T.F. George, J. Appl. Phys. 106, 074513 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    S. Sinha, C. Rothe, R. Guntner, U. Scherf, A.P. Monkman, Phys. Rev. Lett. 90, 127402 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Iwasaki, T. Osasa, M. Asahi, M. Matsumura, Y. Sakaguchi, T. Suzuki, Phys. Rev. B 74, 195209 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    M.A. Baldo, C. Adachi, S.R. Forrest, Phys. Rev. B 62, 10967 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    D.Y. Kondakov, J. Appl. Phys. 102, 114504 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    D.Y. Kondakov, J. Soc. Inform. Display 17, 137 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Adv. Mater. 21, 4802 (2009) CrossRefGoogle Scholar
  17. 17.
    J. Partee, E.L. Frankevich, B. Uhlhorn, J. Shinar, Y. Ding, T.J. Barton, Phys. Rev. Lett. 82, 3673 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    B. Di, Y. Meng, Y.D. Wang, X.J. Liu, Z. An, J. Phys. Chem. B 115, 964 (2011) CrossRefGoogle Scholar
  19. 19.
    B. Di, Y. Meng, Y.D. Wang, X.J. Liu, Z. An, J. Phys. Chem. B 115, 9339 (2011) CrossRefGoogle Scholar
  20. 20.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979) ADSCrossRefGoogle Scholar
  21. 21.
    W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. B. 22, 2099 (1980) ADSCrossRefGoogle Scholar
  22. 22.
    S.A. Brazovskii, N.N. Kirova, JETP Lett. 33, 4 (1981)ADSGoogle Scholar
  23. 23.
    J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Meng, B. Di, X.J. Liu, Z. An, C.Q. Wu, J. Chem. Phys. 128, 184903 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    R.W. Brankin, I. Gladwell, L.F. Shampine, RKSUITE: a suite of Runge-Kutta codes for the initial value problem for ODEs, Softreport 92-S1, Department of Mathematics, Southern Methodist University, Dallas, Texas, U.S.A, 1992; see
  26. 26.
    Z. An, C.Q. Wu, X. Sun, Phys. Rev. Lett. 93, 216407 (2004) ADSCrossRefGoogle Scholar
  27. 27.
    A. Kadashchuk, V.I. Arkhipov, C.H. Kim, J. Shinar, D.W. Lee, Y.R. Hong, J.I. Jin, P. Heremans, H. Bässler, Phys. Rev. B 76, 235205 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    R. Matsunaga, K. Matsuda, Y. Kanemitsu, Phys. Rev. Lett. 106, 037404 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    J. Leng, S. Jeglinski, X. Wei, R.E. Benner, Z.V. Vardeny, F. Guo, S. Mazumdar, Phys. Rev. Lett. 72, 156 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    V. Klimov, D. McBranch, N. Barashkov, J. Ferraris, Phys. Rev. B 58, 7654 (1998) ADSCrossRefGoogle Scholar
  31. 31.
    X.D. Wang, K. Chen, X. Sun, Synth. Met. 119, 221 (2001) CrossRefGoogle Scholar
  32. 32.
    Q.Y. Jiang, S. Li, T.F. George, X. Sun, Chin. Phys. Lett. 27, 107301 (2010) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of Physics, and Hebei Advanced Thin Films LaboratoryHebei Normal UniversityShijiazhuangP.R. China
  2. 2.Department of PhysicsXingtai UniversityXingtaiP.R. China
  3. 3.Zhangjiakou Vocational and Technical CollegeZhangjiakouP.R. China

Personalised recommendations