The European Physical Journal B

, 85:317

Bond order potential for gold

Regular Article

Abstract

We develop an analytic bond order potential for modelling of gold. The bond order formalism includes bond angularity and offers an alternative approach to the embedded atom type potentials frequently used to describe metallic bonding. The advantage of the developed potential is that it can be extended to describe interactions with covalent materials. Experimental and ab initio data of gold properties is used to fit the potential and a good description of bulk and defect properties is achieved. We use the potential to simulate melting of nanoclusters and find that the experimentally observed size dependent melting behaviour is reproduced qualitatively.

Keywords

Computational Methods 

References

  1. 1.
    S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986) ADSCrossRefGoogle Scholar
  2. 2.
    S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 37, 10378 (1988) ADSCrossRefGoogle Scholar
  3. 3.
    J. Cai, Y.Y. Ye, Phys. Rev. B 54, 8398 (1996) ADSCrossRefGoogle Scholar
  4. 4.
    G. Grochola, S.P. Russo, I.K. Snook, J. Chem. Phys. 123, 204719 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    F. Ercolessi, M. Parrinello, E. Tosatti, Phil. Mag. A 58, 213 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    S.B. Sinnott, M.S. Stave, T.J. Raeker, A.E. DePristo, Phys. Rev. B 44, 8927 (1991) ADSCrossRefGoogle Scholar
  7. 7.
    F. Cleri, V. Rosato, Phys. Rev. B 48, 22 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    G.C. Kallinteris, N.I. Papanicolaou, G.A. Evangelakis, D.A. Papaconstantopoulos, Phys. Rev. B 55, 2150 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    H. Chamati, N.I. Papanicolaou, J. Phys.: Condens. Matter 16, 8399 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    L.M. Molina, J.A. Alonso, J. Phys. Chem. C 111, 6668 (2007) CrossRefGoogle Scholar
  11. 11.
    T.T. Järvi, A. Kuronen, M. Hakala, K. Nordlund, A.C.T. van Duin, W.A. Goddard III, T. Jacob, Eur. Phys. J. B 66, 75 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Keith, D. Fantauzzi, T. Jacob, A.C.T. van Duin, Phys. Rev. B 81, 235404 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    S. Olivier, R. Conte, A. Fortunelli, Phys. Rev. B 77, 054104 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    G.C. Abell, Phys. Rev. B 31, 6184 (1985) ADSCrossRefGoogle Scholar
  15. 15.
    J. Tersoff, Phys. Rev. B 37, 6991 (1988) ADSCrossRefGoogle Scholar
  16. 16.
    D.W. Brenner, Phys. Rev. B 42, 9458 (1990) ADSCrossRefGoogle Scholar
  17. 17.
    D.W. Brenner, Phys. Rev. B 46, 1948 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    D.W. Brenner, Phys. Rev. Lett. 63, 1022 (1989) ADSCrossRefGoogle Scholar
  19. 19.
    K. Albe, K. Nordlund, R.S. Averback, Phys. Rev. B 65, 195124 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    N. Juslin, P. Erhart, P. Träskelin, J. Nord, K.O.E. Henriksson, K. Nordlund, E. Salonen, K. Albe, J. Appl. Phys. 98, 123520 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    M. Müller, P. Erhart, K. Albe, J. Phys.: Condens. Matter 19, 326220 (2007) CrossRefGoogle Scholar
  22. 22.
    P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Muller, K. Albe, J. Phys.: Condens. Matter 18, 6585 (2006) ADSCrossRefGoogle Scholar
  23. 23.
    C. Björkas, N. Juslin, H. Timkó, K. Vörtler, K. Nordlund, K.O.E. Henriksson, P. Erhart, J. Phys.: Condens. Matter 21, 445002 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    D. Yelin, D. Oron, S. Thiberge, E. Moses, Y. Silberberg, Opt. Express 11, 1385 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    I.H. El-Sayed, X. Huang, M.A. El-Sayed, Nano Lett. 5, 829 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    S. Link, M.A. El-Sayed, Annu. Rev. Phys. Chem. 54, 331 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Q.H. Wei, K.H. Su, S. Durant, X. Zhang, Nano Lett. 4, 1067 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, T. Komatsubara, Phys. Rev. B 78, 054102 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    P. Kluth, R. Giulian, D.J. Sprouster, C.S. Schnohr, A.P. Byrne, D.J. Cookson, M.C. Ridgway, Appl. Phys. Lett. 94, 113107 (2009) ADSCrossRefGoogle Scholar
  30. 30.
    E.A. Dawi, G. Rizza, M.P. Mink, A.M. Vredenberg, F.H.P.M. Habraken, J. Appl. Phys. 105, 074305 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    A.A. Leino, O.H. Pakarinen, F. Djurabekova, K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 282, 76 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    K. Albe, K. Nordlund, J. Nord, A. Kuronen, Phys. Rev. B 66, 035205 (2002) ADSCrossRefGoogle Scholar
  33. 33.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985)Google Scholar
  34. 34.
    K. Nordlund, parcas Computer Code (2006), http://link.aps.org/doi/10.1103/PhysRevB.85.024105
  35. 35.
    K. Nordlund, J. Wallenius, L. Malerba, Nucl. Instrum. Methods Phys. Res. B 246, 322 (2005) ADSCrossRefGoogle Scholar
  36. 36.
    CRC Handbook of Chemistry and Physics, Internet Version, edited by D.R. Lide, 92nd edn. (Taylor and Francis, 2012)Google Scholar
  37. 37.
    P. Buffat, J.P. Borel, Phys. Rev. A 13, 2287 (1976) ADSCrossRefGoogle Scholar
  38. 38.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984) ADSCrossRefGoogle Scholar
  39. 39.
    J.A. Pakarinen, M. Backman, F. Djurabekova, K. Nordlund, Phys. Rev. B 79, 085426 (2009) ADSCrossRefGoogle Scholar
  40. 40.
    P. Pyykkö, Angew. Chem. Int. Ed. 43, 4412 (2004) CrossRefGoogle Scholar
  41. 41.
    R.C. Birtcher, W. Hertz, G. Fritsch, J.E. Watson, Proc. Intl. Conf. on Fundamental Aspects of Radiation Damage in Metals, CONF-751006-P1 (1975), Vol. 1, p. 405Google Scholar
  42. 42.
    H. Schroeder, B. Stritzker, Radiation effects 33, 125 (1977)CrossRefGoogle Scholar
  43. 43.
    G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Surf. Sci. Lett. 131, L379 (1983) CrossRefGoogle Scholar
  44. 44.
    L.J. Lewis, P. Jensen, J.L. Barrat, Phys. Rev. B 56, 2248 (1997) ADSCrossRefGoogle Scholar
  45. 45.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T. Diaz de la Rubia, J. Tarus, Phys. Rev. B 57, 7556 (1998) ADSCrossRefGoogle Scholar
  47. 47.
    M. Ghaly, K. Nordlund, R.S. Averback, Phil. Mag. A 79, 795 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    K. Nordlund, Comput. Mater. Sci. 3, 448 (1995)CrossRefGoogle Scholar
  49. 49.
    Y. Kimura, Y. Qi, T. Cagin, W.A. Goddard III, MRS Symposium Ser. 554, 43 (1999)Google Scholar
  50. 50.
    O.L. Anderson, D.G. Isaak, S. Yamamoto, J. Appl. Phys. 65, 1534 (1989) ADSCrossRefGoogle Scholar
  51. 51.
    K. Takemura, A. Dewaele, Phys. Rev. B 78, 104119 (2008) ADSCrossRefGoogle Scholar
  52. 52.
    H.E. Schaefer, Phys. Stat. Sol. A 102, 47 (1987)ADSCrossRefGoogle Scholar
  53. 53.
    P. Jung, Phys. Rev. B 23, 664 (1981)ADSCrossRefGoogle Scholar
  54. 54.
    W.R. Tyson, W.A. Miller, Surf. Sci. 62, 267 (1976)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Materials Science and EngineeringUniversity of TennesseeKnoxvilleUSA
  3. 3.Department of Nuclear EngineeringUniversity of TennesseeKnoxvilleUSA

Personalised recommendations