Superconductivity at Tc = 44 K in LixFe2Se2(NH3)y

  • E. -W. Scheidt
  • V. R. Hathwar
  • D. Schmitz
  • A. Dunbar
  • W. Scherer
  • F. Mayr
  • V. Tsurkan
  • J. Deisenhofer
  • A. Loidl
Regular Article


Following a recent proposal by Burrard-Lucas et al. [arXiv:1203.5046] we intercalated FeSe with Li in liquid ammonia. We report on the synthesis of new LixFe2Se2(NH3)y phases as well as on their magnetic and superconducting properties. We suggest that the superconducting properties of these new hybride materials appear not to be influenced by the presence of electronically-innocent Li(NH2) molecules. Indeed, high onset temperatures of 44 K and shielding fractions of almost 80% were only obtained in samples containing exclusively Lix(NH3)y moieties acting simultaneously as electron donors and spacer units. The c-axis lattice parameter of the new intercalated phases is strongly enhanced when compared to the alkali-metal intercalated iron selenides A1−xFe2−ySe2 with A = K, Rb, Cs, Tl with Tc = 32 K.


Solid State and Materials 


  1. 1.
    Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008) CrossRefGoogle Scholar
  2. 2.
    D.N. Basov, A.V. Chubukov, Nat. Phys. 7, 272 (2011)CrossRefGoogle Scholar
  3. 3.
    C. Wang, L. Li, S. Chi, Z. Zhu, Z. Ren, Y. Li, Y. Wang, X. Lin, Y. Luo, S. Jiang, X. Xu, G. Cao, Z. Xu, Europhys. Lett. 83, 67006 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    P. Cheng, B. Shen, G. Mu, X. Zhu, F. Han, B. Zeng, H.-H. Wen, Europhys. Lett. 85, 67003 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    M. Rotter, M. Tegel, D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008) ADSCrossRefGoogle Scholar
  6. 6.
    Ch. Kant, J. Deisenhofer, A. Günther, F. Schrettle, A. Loidl, M. Rotter, D. Johrendt, Phys. Rev. B 81, 014529 (2010) ADSCrossRefGoogle Scholar
  7. 7.
    X.C. Wang, Q.Q. Liu, Y.X. Lv, W.B. Gao, L.X. Yang, R.C. Yu, F.Y. Li, C.Q. Jin, Solid State Commun. 148, 538 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    H. Ogino, Y. Matsumura, Y. Katsura, K. Ushiyama, S. Horii, K. Kishio, J. Shimoyama, Supercond. Sci. Technol. 22, 075008 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    D.C. Johnston, Adv. Phys. 59, 803 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    F.-C. Hsu, J.-Y. Luo, K.-W. Yeh, T.-K. Chen, T.-W. Huang, P.M. Wu, Y.-C. Lee, Y.-L. Huang, Y.-Y. Chu, D.-C. Yan, M.-K. Wu, Proc. Natl. Acad. Sci. USA 105, 14263 (2008) ADSGoogle Scholar
  12. 12.
    M.H. Fang, H.M. Pham, B. Qian, T.J. Liu, E.K. Vehstedt, Y. Liu, L. Spinu, Z.Q. Mao, Phys. Rev. B 78, 224503 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    K.W. Yeh, T.-W. Huang, Y. Huang, T.-K. Chen, F.-C. Hsu, P.M. Wu, Y.-C. Lee, Y.-Y. Chu, C.-L. Chen, J.-Y. Luo, D.-C. Yan, M.-K. Wu, Europhys. Lett. 84, 37002 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    V. Tsurkan, J. Deisenhofer, A. Günther, Ch. Kant, H.-A. Krug von Nidda, F. Schrettle, A. Loidl, Eur. Phys. J. B 79, 289 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A. Günther, J. Deisenhofer, Ch. Kant, H.-A. Krug von Nidda, V. Tsurkan, A. Loidl, Supercond. Sci. Technol. 24, 045009 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    S. Medvedev, T.M. McQueen, I.A. Troyan, T. Palasyuk, M.I. Eremets, R.J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, C. Felser, Nat. Mater. 8, 630 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, X. Chen, Phys. Rev. B 82, 180520(R) (2010) ADSGoogle Scholar
  18. 18.
    F. Ye, S. Chi, Wei Bao, X.F. Wang, J.J. Ying, X.H. Chen, H.D. Wang, C.H. Dong, Minghu Fang, Phys. Rev. Lett. 107, 137003 (2011) ADSCrossRefGoogle Scholar
  19. 19.
    W. Bao, Q. Huang, G.F. Chen, M.A. Green, D.M. Wang, J.B. He, X.Q. Wang, Y. Qiu, Chin. Phys. Lett. 28, 086104 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    A. Ricci, N. Poccia, G. Campi, B. Joseph, G. Arrighetti, L. Barba, M. Reynolds, M. Burghammer, H. Takeya, Y. Mizuguchi, Y. Takano, M. Colapietro, N.L. Saini, A. Bianconi, Phys. Rev. B 84, 060511 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    W. Li, H. Ding, P. Deng, K. Chang, C. Song, K. He, L. Wang, X. Ma, J.-P. Hu, X. Chen, Q.-K. Xue, Nat. Phys. 8, 126 (2012)CrossRefGoogle Scholar
  22. 22.
    V. Ksenofontov, G. Wortmann, S.A. Medvedev, V. Tsurkan, J. Deisenhofer, A. Loidl, C. Felser, Phys. Rev. B 84, 180508 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Texier, J. Deisenhofer, V. Tsurkan, A. Loidl, D.S. Inosov, G. Friemel, J. Bobroff, Phys. Rev. Lett. 108, 237002 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    A. Charnukha, A. Cvitkovic, T. Prokscha, D. Pröpper, N. Ocelic, A. Suter, Z. Salman, E. Morenzoni, J. Deisenhofer, V. Tsurkan, A. Loidl, B. Keimer, A.V. Boris, Phys. Rev. Lett. 109, 017003 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    J.T. Park, G. Friemel, Y. Li, J.-H. Kim, V. Tsurkan, J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl, A. Ivanov, B. Keimer, D.S. Inosov, Phys. Rev. Lett. 107, 177005 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    G. Friemel, J.T. Park, T.A. Maier, V. Tsurkan, Y. Li, J. Deisenhofer, H.-A. Krug von Nidda, A. Loidl, A. Ivanov, B. Keimer, D.S. Inosov, Phys. Rev. B 85, 140511(R) (2012) ADSCrossRefGoogle Scholar
  27. 27.
    M. Gooch, B. Lv, L.Z. Deng, T. Muramatsu, J. Meen, Y.Y. Xue, B. Lorenz, C.W. Chu, Phys. Rev. B 84, 184517 (2011) ADSCrossRefGoogle Scholar
  28. 28.
    J. Guo, X. Chen, C. Zhang, J. Guo, X. Chen, Q. Wu, D. Gu, P. Gao, X. Dai, L. Yang, H. Mao, L. Sun, Z. Zhao, Phys. Rev. Lett. 108, 197001 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    V. Ksenofontov, S. Medvedev, L.M. Schoop, G. Wortmann, T. Palasyuk, V. Tsurkan, J. Deisenhofer, A. Loidl, C. Felser, Phys. Rev. B 85, 214519 (2012) ADSCrossRefGoogle Scholar
  30. 30.
    L. Sun, X. Chen, J. Guo, P. Gao, H. Wang, M. Fang, X. Chen, G. Chen, Q. Wu, C. Zhang, D. Gu, X. Dong, K. Yang, A. Li, X. Dai, H. Mao, Z. Zhao, Nature 483, 67 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    M. Fang, H. Wang, C. Dong, Z. Li, C. Feng, J. Chen, H.Q. Yuan, Europhys. Lett. 94, 27009 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    D.M. Wang, J.B. He, T.-L. Xia, G.F. Chen, Phys. Rev. B 83, 132502 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    A.M. Zhang, T.L. Xia, W. Tong, Z.R. Yang, Q.M. Zhang, arXiv:1203.1533Google Scholar
  34. 34.
    T.P. Ying, X.L. Chen, G. Wang, S.F. Jin, T.T. Zhou, X.F. Lai, H. Zhang, W.Y. Wang, Sci. Rep. 2, 426 (2012)CrossRefGoogle Scholar
  35. 35.
    M. Burrard-Lucas, D.G. Free, S.J. Sedlmaier, J.D. Wright, S.J. Cassidy, Y. Hara, A.J. Corkett, T. Lancaster, P.J. Baker, S.J. Blundell, S.J. Clarke, arXiv:1203.5046Google Scholar
  36. 36.
    T.M. McQueen, Q. Huang, V. Ksenofontov, C. Felser, Q. Xu, H. Zandbergen, Y.S. Hor, J. Allred, A.J. Williams, D. Qu, J. Checkelsky, N.P. Ong, R.J. Cava, Phys. Rev. B 79, 014522 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    K. Adachi, J. Phys. Soc. Jpn 16, 2187 (1961) ADSCrossRefGoogle Scholar
  38. 38.
    A. LeBail, Powder Diffraction 14, 249 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    M. Presnitz, M. Herzinger, E.-W. Scheidt, W. Scherer, M. Baenitz, M. Marz, Measur. Sci. Technol. 23, 085002 (2012) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • E. -W. Scheidt
    • 1
  • V. R. Hathwar
    • 1
  • D. Schmitz
    • 1
  • A. Dunbar
    • 1
  • W. Scherer
    • 1
  • F. Mayr
    • 2
  • V. Tsurkan
    • 2
    • 3
  • J. Deisenhofer
    • 2
  • A. Loidl
    • 2
  1. 1.CPM, Institute of PhysicsUniversity of AugsburgAugsburgGermany
  2. 2.Center for Electronic Correlations and Magnetism, Institute of PhysicsUniversity of AugsburgAugsburgGermany
  3. 3.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauR. Moldova

Personalised recommendations