Evolution of quantum strategies on a small-world network

Regular Article

Abstract

In this paper, quantum strategies are introduced within evolutionary games in order to investigate the evolution of quantum strategies on a small-world network. Initially, certain quantum strategies are taken from the full quantum space at random and assigned to the agents who occupy the nodes of the network. Then, they play n-person quantum games with their neighbors according to the physical model of a quantum game. After the games are repeated a large number of times, a quantum strategy becomes the dominant strategy in the population, which is played by the majority of agents. However, if the number of strategies is increased, while the total number of agents remains constant, the dominant strategy almost disappears in the population because of an adverse environment, such as low fractions of agents with different strategies. On the contrary, if the total number of agents rises with the increase of the number of strategies, the dominant strategy re-emerges in the population. In addition, from results of the evolution, it can be found that the fractions of agents with the dominant strategy in the population decrease with the increase of the number of agents n in a n-person game independent of which game is employed. If both classical and quantum strategies evolve on the network, a quantum strategy can outperform the classical ones and prevail in the population.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M. Perc, A. Szolnoki, Biosystems 99, 109 (2010)CrossRefGoogle Scholar
  2. 2.
    G. Szabó, A. Szolnoki, R. Izsak, J. Phys. A 37, 2599 (2004)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    F.C. Santos, J.F. Rodrigues, J.M. Pacheco, Phys. Rev. E 72, 056128 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    L.H. Shang, X. Li, X.F. Wang, Eur. Phys. J. B 54, 369 (2006)ADSMATHCrossRefGoogle Scholar
  5. 5.
    F. Fu, L.H. Liu, L. Wang, Eur. Phys. J. B 56, 367 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    X. Chen, L. Wang, Phys. Rev. E 77, 017103 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Q. Li, A. Iqbal, M. Chen, D. Abbott, Physica A 391, 3316 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    A. Eriksson, K. Lindgren, J. Theor. Biol. 232, 399 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    C.H. Chan, H. Yin, P. Hui, D.F. Zheng, Physica A 387, 2919 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J.M. Pacheco, F.C. Santos, M.O. Souza, B. Skyrms, Proc. Roy. Soc. B: Biol. Sci. 276, 315 (2009)CrossRefGoogle Scholar
  11. 11.
    M. Ji, C. Xu, D.F. Zheng, P. Hui, Physica A 389, 1071 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    P.E. Turner, L. Chao, Nature 398, 441 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    T. Pfeiffer, S. Schuster, S. Bonhoeffer, Science 292, 504 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    T. Frick, S. Schuster, Naturwissenschaften 90, 327 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    C. Chettaoui, F. Delaplace, M. Manceny, M. Malo, Biosystems 87, 136 (2007)CrossRefGoogle Scholar
  16. 16.
    D.A. Meyer, Phys. Rev. Lett. 82, 1052 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  17. 17.
    J. Eisert, M. Wilkens, M. Lewenstein, Phys. Rev. Lett. 83, 3077 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    L. Marinatto, T. Weber, Phys. Lett. A 272, 291 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    A. Iqbal, A.H. Toor, Phys. Lett. A 280, 249 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    R. Kay, N.F. Johnson, S.C. Benjamin, J. Phys. A 34, L547 (2001)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, R. Han, Phys. Rev. Lett. 88, 137902 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    R. Prevedel, A. Stefanov, P. Walther, A. Zeilinger, New J. Phys. 5, 205 (2007)CrossRefGoogle Scholar
  23. 23.
    C. Schmid, A.P. Flitney, W. Wieczorek, N. Kiesel, H. Weinfurter, L.C.L. Hollenberg, New J. Phys. 12, 063031 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    A. Iqbal, A.H. Toor, Phys. Lett. A 300, 541 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    A. Iqbal, A.H. Toor, Phys. Lett. A 293, 103 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    J.M. Chappell, A. Iqbal, D. Abbott, PLoS ONE 6, e21623 (2011)CrossRefGoogle Scholar
  27. 27.
    J.M. Chappell, A. Iqbal, D. Abbott, PLoS ONE 7, e29015 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    J.M. Chappell, A. Iqbal, D. Abbott, PLoS ONE 7, e36404 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    A.P. Flitney, D. Abbott, Fluct. Noise Lett. 2, R175 (2002)MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Guo, J. Zhang, G.J. Koehler, Decis. Support Syst. 46, 318 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Ekert, P.M. Hayden, H. Inamori, Coherent Atomic Matter waves 72, 661 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    D. Deutsch, R. Jozsa, Proc. Roy. Soc. Lond. Ser. A, Math. Phys. Sci. 439, 553 (1992)MathSciNetADSMATHCrossRefGoogle Scholar
  33. 33.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  34. 34.
    S.C. Benjamin, P.M. Hayden, Phys. Rev. A 64, 030301 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    J. Du, H. Li, X. Xu, M. Shi, X. Zhou, R. Han, Arxiv:quant-ph/0111138 (2001)Google Scholar
  36. 36.
    M.E.J. Newman, D.J. Watts, Phys. Rev. E 60, 7332 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    M.E.J. Newman, D.J. Watts, Phys. Lett. A 263, 341 (1999)MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    M.E.J. Newman, SIAM Rev. 45, 167 (2003)MathSciNetADSMATHCrossRefGoogle Scholar
  39. 39.
    G. Szabó, C. Toke, Phys. Rev. E 58, 69 (1998)ADSCrossRefGoogle Scholar
  40. 40.
    R. Boyd, P.J. Richerson, J. Theor. Biol. 132, 337 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.College of Electrical Engineering, Chongqing UniversityChongqingP.R. China
  2. 2.School of Electrical and Electronic Engineering, University of AdelaideAdelaideAustralia

Personalised recommendations