Advertisement

Density distribution for an inhomogeneous finite gravitational system

  • A. Bose
  • M.S. JanakiEmail author
Regular Article

Abstract

An attempt is made to develop an equilibrium kinetic equation for a weakly non ideal inhomogeneous gravitational system utilizing the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy of equations. It is shown that the pair correlational function explicitly depends upon the nature of binary interaction between particles. The corresponding kinetic equation containing pair correlation corrections is devoid of the degeneracy present in the collisionless Boltzmann equation with respect to the nature of the two particle interactions, unlike the Vlasov equation that cannot recognize the nature of two particle interaction. A net effect of the particle correlations can be realized only if the spatial symmetry of the correlation interaction is broken due to a spatial inhomogeneity. Such an inhomogeneity is inherently present in a bulk gravitational system in view of the unshielded long range nature of the two-particle interactions. In a finite gravitational system, the effects of pair correlations in the first order kinetic equation can be expressed in terms of the macroscopic gravitational potential to obtain a modified Boltzmann distribution that includes the effects of correlations.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lect. Not. in Phys. 602, 1 (2002)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    P.H. Chavanis, Physics A 387, 787 (2008)MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    P.H. Chavanis, J. Stat. Mech. P05019 (2010)Google Scholar
  4. 4.
    F. Bouchet, S. Gupta, D. Mukamel, Physica A 388, 4389 (2010)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Y. Levin, R. Pakter, T.N. Teles, Phys. Rev. Lett. 100, 040604 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    D. Lynden-Bell, Mon. Not. Roy. Astron. Soc. 136, 101 (1967)ADSGoogle Scholar
  7. 7.
    S. Chandrasekhar, Principles of Stellar Dynamics (University of Chicago Press, 1942)Google Scholar
  8. 8.
    L. Cohen, L. Spitzer, P. Routly, Phys. Rev. 80, 230 (1950)MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    G. Severne, M.J. Haggerty, Astrophys. Space Sci. 45, 287 (1976)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    W.C. Saslaw, Gravitational Physics of Stellar and Galactic Systems (Cambridge Univ. Press, 1985)Google Scholar
  11. 11.
    L.D. Landau, Phys. Z. Sowj. Union 10, 154 (1936)zbMATHGoogle Scholar
  12. 12.
    R. Balescu, Phys. Fluids 3, 52 (1960)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Lenard, Ann. Phys. 3, 390 (1960)MathSciNetADSGoogle Scholar
  14. 14.
    A. Lenard, I.B. Bernstein, Phys. Rev. 112, 1456 (1958)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    H.S. Green, Nucl. Fus. 1, 69 (1961)CrossRefGoogle Scholar
  16. 16.
    A. Bose, M.S. Janaki, J. Phys. A: Math. Theor. 43, 125501 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    T. Padmanabhan, Phys. Rep. 1188, 285 (1990)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    J. Katz, Found. Phys. 33, 223 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006)ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    P.H. Chavanis, Phys. A 377, 469 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Heyvaerts, Mon. Not. Astron. Soc. 407, 355 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    M.D. Weinberg, Mon. Not. R. Astron. Soc. 297, 101 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    P.H. Chavanis, Phys. A 391, 3680 (2012)MathSciNetCrossRefGoogle Scholar
  24. 24.
    I.B. Bernstein, J.M. Greene, M.D. Kruskal, Phys. Rev. 108, 546 (1957)MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    G.H. Paine, J. Chem. Phys. 111, 833 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    N.N. Bogoliubov, The Dynamical Theory In Statistical Physics (Hindustan Publishing Corporation, Delhi, 1965)Google Scholar
  27. 27.
    D.C. Montgomery, D.A. Tidman, Plasma Kinetic Theory (McGraw Hill Book Company, New York, 1964)Google Scholar
  28. 28.
    L.S. Brown, L.G. Yaffe, Phys. Rep. 340, 1 (2001)ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    A. Bose, M.S. Janaki, Phys. Plasmas 14, 063701 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1932), p. 59Google Scholar
  31. 31.
    W.C. Saslaw, A.J.S. Hamilton, Astrophys. J. 273, 13 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    P.J.E. Peebles, The Large Scale Structure of the Universe (Princeton University Press, Princeton, 1980)Google Scholar
  33. 33.
    N. Iqbal, F. Ahmad, M.S. Khan, J. Astrophys. Astron. 27, 373 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    M. Abramowitz, I. Stegun, Handbook of Mathematical functions (Dover, New-York, 1970)Google Scholar
  35. 35.
    Y. Levin, R. Pakter, B. Rizzato, Phys. Rev. E 78, 021130 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    V.A. Antonov, in Dynamics of Star clusters, IAU Symposium, 1985, edited by J. Goodman, P. Hut (D. Reidel, Dordrecht), p. 521Google Scholar
  37. 37.
    J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, New Jercy, 1987)Google Scholar
  38. 38.
    M.J. Haggerty, G. Severne, in Advances in Chemical Physics, edited by I. Prigogine, S.A. Rice (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007)Google Scholar
  39. 39.
    I.R. King, Astrophys. J. 71, 64 (1984)Google Scholar
  40. 40.
    H.C. Plummer, Mon. Not. R. Astron. Soc. 71, 460 (1911)ADSGoogle Scholar
  41. 41.
    L. Velazqez, F. Guzman, Phys. Rev. E 68, 066116 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    I. Yoon, H.M. Lee, J. Hong, Mon. Not. R. Astron. Soc. 414, 278 (2011)Google Scholar
  43. 43.
    T.N. Teles, Y. Levin, R. Pakter, Mon. Not. R. Astron. Soc. 417, L21 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    T.N. Teles, Y. Levin, R. Pakter, F.B. Rizzato, J. Stat. Mech. 5, P05007 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Serampore CollegeSerampore, HooghlyIndia
  2. 2.Saha Institute of Nuclear PhysicsCalcuttaIndia

Personalised recommendations