Advertisement

Size selected growth of nanodots: analytical prediction for the selected size

  • K. A. RiekkiEmail author
Regular Article

Abstract

In size selected growth of metal and semiconductor nanodots the selected mean size is frequently larger than the size corresponding to the minimum of free energy of dots. This “overshooting” effect is studied here using a reaction kinetic model with size dependent growth kinetics in adatom processes and thermodynamical free energy difference of nanodots. We calculate analytical prediction for the selected mean size of the dots using stationary state approximation. It is shown, that the overshooting depends on the skewness of the Gaussian size distribution.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    F. Rosei, J. Phys.: Condens. Matter 16, S1373 (2004) ADSCrossRefGoogle Scholar
  2. 2.
    D.L. Leslie-Pelecky, R.D. Rieke, Chem. Mater. 8, 1770 (1996)CrossRefGoogle Scholar
  3. 3.
    G.Y. Yurkov, D.A. Baranov, I.P. Dotsenko, S.P. Gubin, Composites: Part B 37, 413 (2006)CrossRefGoogle Scholar
  4. 4.
    M. Meixner, E. Schöll, V.A. Shchukin, D. Bimberg, Phys. Rev. Lett. 87, 236101 (2001) ADSCrossRefGoogle Scholar
  5. 5.
    M. Meixner, R. Kunert, E. Schöll, Phys. Rev. B 67, 195301 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    D.J. Eaglesham, M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990) ADSCrossRefGoogle Scholar
  7. 7.
    C. Priester, M. Lannoo, Phys. Rev. Lett. 75, 93 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    K. Pirkkalainen, I.T. Koponen, Surf. Sci. 604, 951 (2010) ADSCrossRefGoogle Scholar
  9. 9.
    T.P. Munt, D.E. Jesson, V.A. Shchukin, D. Bimberg, Phys. Rev. B 75, 085422 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    K.A. Riekki, I.T. Koponen, Eur. Phys. J. B 56, 311 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    F. Liu, A.H. Li, M.G. Lagally, Phys. Rev. Lett. 87, 126103 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    F. Liu, Phys. Rev. Lett. 89, 246105 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    Z. Gai, B. Wu, G.A. Farnan, D. Shu, M. Wang, Z. Zhang, J. Shen, Phys. Rev. Lett. 89, 235502 (2002) ADSCrossRefGoogle Scholar
  14. 14.
    K. Pirkkalainen, K.A. Riekki, I.T. Koponen, Comput. Mater. Sci. 43, 325 (2008)CrossRefGoogle Scholar
  15. 15.
    G.S. Bales, A. Zangwill, Phys. Rev. B 55, R1973 (1997) ADSCrossRefGoogle Scholar
  16. 16.
    K.-O. Ng, D. Vanderbilt, Phys. Rev. B 52, 2177 (1995) ADSCrossRefGoogle Scholar
  17. 17.
    R. Becker, W. Döring, Ann. Phys. 4, 719 (1935)CrossRefGoogle Scholar
  18. 18.
    D. Kaschiev, Cryst. Res. Technol. 19, 1413 (1984) CrossRefGoogle Scholar
  19. 19.
    J.J.L. Velázquez, J. Stat. Phys. 92, 195 (1998)zbMATHCrossRefGoogle Scholar
  20. 20.
    R. Corless, G. Gonnet, D. Hare, D. Jeffrey, D. Knuth, Adv. Comput. Mater. 5, 329 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems (Springer, Berlin, Heidelberg, 2006) Google Scholar
  22. 22.
    J. Merikanto, H. Vehkamäki, E. Zapadinsky, J. Chem. Phys. 121, 914 (2004) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Physical SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations