Variational principle underlying scale invariant social systems

Regular Article

Abstract

MaxEnt’s variational principle, in conjunction with Shannon’s logarithmic information measure, yields only exponential functional forms in straightforward fashion. In this communication we show how to overcome this limitation via the incorporation, into the variational process, of suitable dynamical information. As a consequence, we are able to formulate a somewhat generalized Shannonian maximum entropy approach which provides a unifying “thermodynamic-like” explanation for the scale-invariant phenomena observed in social contexts, as city-population distributions. We confirm the MaxEnt predictions by means of numerical experiments with random walkers, and compare them with some empirical data.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    M. Schroeder, Fractals, Chaos and Power Laws (Freeman, New York, 1990)Google Scholar
  2. 2.
    M.E.J. Newman, Phys. Rev. E 64, 016131 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    A. Hernando et al., Phys. Lett. A 374, 18 (2009)ADSMATHCrossRefGoogle Scholar
  4. 4.
    A.-L. Barabasi, R. Albert, Rev. Mod. Phys. 74, 47 (2002)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    T. Maillart et al., Phys. Rev. Lett. 101, 218701 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    B. Blasius, R. Tönjes, Phys. Rev. Lett. 103, 218701 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    R.N. Costa Filho et al., Phys. Rev. E 60, 1067 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    A.A. Moreira et al., Phys. Rev. E 73, 065101(R) (2006)ADSCrossRefGoogle Scholar
  9. 9.
    L.C. Malacarne, R.S. Mendes, E.K. Lenzi, Phys. Rev. E 65, 017106 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    M. Marsili, Y.C. Zhang, Phys. Rev. Lett. 80, 2741 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    R.L. Axtell, Science 293, 1818 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    G.K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, Mass., Cambridge, 1949)Google Scholar
  13. 13.
    Y. Chen, Chaos Solitons Fractals 45, 63 (2012)Google Scholar
  14. 14.
    B.C. Murtra, R.V. Solé, Phys. Rev. E82, 011102 (2010)Google Scholar
  15. 15.
    X. Gabaix, Quart. J. Econom. 114, 739 (1999)MATHCrossRefGoogle Scholar
  16. 16.
    A. Hernando, C. Vesperinas, A. Plastino, Physica A 389, 490 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A. Hernando et al., Eur. Phys. J. B 76, 87 (2010)ADSMATHCrossRefGoogle Scholar
  18. 18.
    W.E. Weisstein, W. Eric, Benford’s Law, From MathWorld – A Wolfram Web Resource, http://mathworld.wolfram.com/BenfordsLaw.html
  19. 19.
    F. Benford, Proc. Am. Phil. Soc. 78, 551572 (1938)Google Scholar
  20. 20.
  21. 21.
    J.S. Huxley, Problems of Relative Growth (Methuen & Co. Lmtd., London, 1932)Google Scholar
  22. 22.
    S.M. Ross, Introduction to Probability Models, 9th edn. (Academis Press, New York, 2007)Google Scholar
  23. 23.
    H. Rozenfeld et al., Proc. Natl. Acad. Sci. 105, 18702 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    S. Ree, Phys. Rev. E 73, 026115 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    W.J. Reed, B.D. Hughes, Phys. Rev. E 66, 067103 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    S. Galam, J. Stat. Phys. 61, 943 (1990)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
  28. 28.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S. Fortunato, C. Castellano, Phys. Rev. Lett. 99, 138701 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    M. Batty, Cities and Complexity (MIT Press, Cambridge, MA, 2005)Google Scholar
  31. 31.
    C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, NY, 2009)Google Scholar
  32. 32.
    Karmeshu, S. Sharma, in Power Law and Tsallis Entropy: Network Traffic and Applications Chaos, Nonlinearity, Complexity, edited by A.S. Sengupta (Springer, Berlin, Heidelberg, 2006), Vol. 206, pp. 162 − 178Google Scholar
  33. 33.
    V. Latora, M. Baranger, A. Rapisarda, C. Tsallis, Phys. Lett. A 273, 97 (2000)MathSciNetADSMATHCrossRefGoogle Scholar
  34. 34.
    S. Abe, N. Suzuki, Phys. Rev. E 67, 016106 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    S. Galam, Physica A 285, 66 (2000)ADSMATHCrossRefGoogle Scholar
  36. 36.
    E.T. Jaynes, Phys. Rev. 106, 620 (1957)MathSciNetADSMATHCrossRefGoogle Scholar
  37. 37.
    E.T. Jaynes, Phys. Rev. 108, 171 (1957)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    E.T. Jaynes, IEEE Trans. Syst. Sci. Cybern. 4, 227 (1968)MATHCrossRefGoogle Scholar
  39. 39.
    A. Katz, Principles of Statistical Mechanics (Freeman, San Francisco, 1967)Google Scholar
  40. 40.
    A. Plastino, Physica A 344, 608 (2004)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    A.R. Plastino, A. Plastino, Phys. Lett. A 177, 177 (1993)MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    A. Hernando, A. Plastino, A.R. Plastino, Eur. Phys. J. B 85, 147 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    H. Simon, Biometrika 42, 425 (1955)MathSciNetMATHGoogle Scholar
  44. 44.
    B.R. Frieden, B.H. Soffer, Phys. Rev. E 52, 2274 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    J. Eeckhout, Am. Econ. Rev. 94, 1429 (2004)CrossRefGoogle Scholar
  46. 46.
    Census bureau, Government of USA (web)Google Scholar
  47. 47.
    Pearson product-moment correlation coefficient, Wikipedia (http://en.wikipedia.org/wiki/Pearson˙product-moment˙correlation˙coefficient)
  48. 48.
    G. Krings et al., J. Stat. Mech. L07003 (2009)Google Scholar
  49. 49.
    Economic, Policy, Planning and Statistics Office (EPPSO), Republic of the Marshal Islands (web)Google Scholar
  50. 50.
    Coefficient of determination, Wikipedia (http://en.wikipedia.org/wiki/Coefficient˙of˙determination)

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire Collisions, Agrégats, Réactivité, IRSAMCUniversité Paul SabatierToulouse Cedex 09France
  2. 2.IFLP-CCT-CONICETNational University La PlataLa PlataArgentina
  3. 3.Universitat de les Illes Balears and IFISC-CSICPalma de MallorcaSpain

Personalised recommendations