Exponential decay of Laplacian eigenfunctions in domains with branches of variable cross-sectional profiles

  • A.L. Delitsyn
  • B.T. Nguyen
  • D.S. GrebenkovEmail author
Regular Article


We study the behavior of the Laplace operator eigenfunctions in an arbitrary resonator (or waveguide) with branches of variable cross-sectional profiles. When an eigenvalue is below a threshold which is determined by the shape of the branch, the associated eigenfunction is proved to have an upper bound which exponentially decays inside the branch. The decay rate is shown to be twice the square root of the difference between the threshold and the eigenvalue. A finite-element numerical solution of the eigenvalue problem illustrates and further extends the above theoretical result which may help to design elaborate resonators or waveguides in microelectronics, optics and acoustics.


Statistical and Nonlinear Physics 


  1. 1.
    R. Courant, D. Hilbert, Methods of Mathematical Physics (Wiley, New York, 1989), Vol. 1, p. 302Google Scholar
  2. 2.
    B. Sapoval, T. Gobron, A. Margolina, Phys. Rev. Lett. 67, 2974 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    B. Sapoval, T. Gobron, Phys. Rev. E 47, 3013 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    S. Russ, B. Sapoval, O. Haeberlé, Phys. Rev. E 55, 1413 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    B. Sapoval, O. Haeberlé, S. Russ, J. Acoust. Soc. Am. 102, 2014 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    O. Haeberlé, B. Sapoval, K. Menou, H. Vach, Appl. Phys. Lett. 73, 3357 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    B. Hébert, B. Sapoval, S. Russ, J. Acoust. Soc. Am. 105, 1567 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    C. Even, S. Russ, V. Repain, P. Pieranski, B. Sapoval, Phys. Rev. Lett. 83, 726 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    S. Russ, B. Sapoval, Phys. Rev. E 65, 036614 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    S. Felix, M. Asch, M. Filoche, B. Sapoval, J. Sound. Vibr. 299, 965 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    M. Filoche, S. Mayboroda, Phys. Rev. Lett. 103, 254301 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    S.M. Heilman, R.S. Strichartz, Notices Amer. Math. Soc. 57, 624 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    B. Daudert, M. Lapidus, Fractals 15, 255 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    A.L. Delitsyn, B.-T. Nguyen, D.S. Grebenkov, Eur. Phys. J. B 85, 176 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley & Sons, New York, 1999).Google Scholar
  16. 16.
    J. Goldstone, R.L. Jaffe, Phys. Rev. B 45, 14100 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Carini, J.T. Londergan, K. Mullen, D.P. Murdock, Phys. Rev. B 48, 4503 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    E.E. Schnol’, Mat. Sb. 42, 273 (1957)Google Scholar
  19. 19.
    Y.B. Orocko, Math. USSR Sb. 22, 167 (1974)CrossRefGoogle Scholar
  20. 20.
    S. Agmon, Lectures on Exponential Decay of Solution of Second-Order Elliptic Equation (Princton Univercity Press, 1982).Google Scholar
  21. 21.
    V.P. Maslov, Sov. Math. Surv. 19, 199 (1964) [in Russian]Google Scholar
  22. 22.
    V.P. Maslov, Perturbation Theory and Asymptotic Methods (Moscow State University, Moscow, 1965) [in Russian]Google Scholar
  23. 23.
    P. Grisvard, Elliptic Problem for Nonsmooth Domain (Pitman Advanced Publishing Company, Boston, 1985).Google Scholar
  24. 24.
    J.T. Beale, Commun. Pure Appl. Math. 26, 549 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    R.R. Gadyl’shin, Math. Notes 54, 1192 (1993)MathSciNetCrossRefGoogle Scholar
  26. 26.
    R.R. Gadyl’shin, Math. Notes 55, 14 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    R.R. Gadyl’shin, Izv. Math. 69, 265 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    F. Rellich, Das Eigenwertproblem von in Halbrohren (Studies and essays presented to R. Courant, New York, 1948), pp. 329–344Google Scholar
  29. 29.
    J.L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications (Springer-Verlag, 1972)Google Scholar
  30. 30.
    I.M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators (Fizmathgiz, Moscow, 1963; Translated in English in 1965)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Mathematical Department of the Faculty of Physics, Moscow State UniversityMoscowRussia
  2. 2.Laboratoire de Physique de la Matière Condensée (UMR 7643), CNRS – École PolytechniquePalaiseauFrance
  3. 3.Laboratoire Poncelet (UMI 2615), CNRS – Independent University of MoscowMoscowRussia
  4. 4.Chebyshev Laboratory, Saint Petersburg State UniversitySaint PetersburgRussia

Personalised recommendations