Controlling the first-spike latency response of a single neuron via unreliable synaptic transmission

Regular Article

Abstract

Previous experimental and theoretical studies suggest that first-spike latency is an efficient information carrier and may contain more amounts of neural information than those of other spikes. Therefore, the biophysical mechanisms underlying the first-spike response latency are of considerable interest. Here we present a systematical investigation on the response latency dynamics of a single Hodgkin-Huxley neuron subject to both a suprathreshold periodic forcing and background activity. In contrast to most earlier works, we consider a biophysically realistic noise model which allows us to relate the synaptic background activity to unreliable synapses and latency. Our results show that first-spike latency of a neuron can be regulated via unreliable synapses. An intermediate level of successful synaptic transmission probability significantly increases both the latency and its jitter, indicating that the unreliable synaptic transmission constrains the signal detection ability of neurons. Furthermore, we demonstrate that the destructive influence of synaptic unreliability can be controlled by the input regime and by the excitatory coupling strength. Better tuning of these two factors could help the H-H neuron encode information more accurately in terms of the first-spike latency.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    E.D. Adrian, J. Physiol. 61, 49 (1926)Google Scholar
  2. 2.
    A.P. Georgepoulos, A.B. Schwartz, R.E. Keftner, Science 233, 1416 (1986) ADSCrossRefGoogle Scholar
  3. 3.
    M. Abeles, Corticonics: Neural Circuitry of the Cerebral Cortex (Cambridge University Press, New York, 1991) Google Scholar
  4. 4.
    M. Abeles, H. Bergman, E. Magalit, A. Vaadia, J. Neurophysiol. 70, 1629 (1993) Google Scholar
  5. 5.
    G. Buzsáki, Z. Horvath, R. Urioste, J. Hetke, K. Wise, Science 256, 1025 (1992) ADSCrossRefGoogle Scholar
  6. 6.
    K.N. Dudkin, V.K. Kruchinin, I.V. Chueva., Neurosci. Behav. Physiol. 27, 303 (1997)CrossRefGoogle Scholar
  7. 7.
    P. Fries, J.H. Reynolds, A.E. Rorie, R. Desimone, Science 291, 1560 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    G. Buzsáki, Rhytms of the Brain (Oxford University Press, New York, 2006)Google Scholar
  9. 9.
    T. Womelsdorf, P. Fries, Curr. Opin. Neurobiol. 17, 154 (2007)CrossRefGoogle Scholar
  10. 10.
    U. Rutishauser, I.B. Ross, A.N. Mamelak, E.M. Schuman, Nature 464, 903 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    S.J. Thorpe, D. Fize, C. Marlot, Nature 381, 520 (1996) ADSCrossRefGoogle Scholar
  12. 12.
    N. Masuda, K. Aihara, Neural Comput. 15, 103 (2003)MATHCrossRefGoogle Scholar
  13. 13.
    Y. Hirata, Y. Katori, H. Shimokawa, H. Suzuki, T.A. Blenkinsop, E.J. Lang, K. Aihara, J. Neurosci. Methods 172, 312 (2008) CrossRefGoogle Scholar
  14. 14.
    S.J. Thorpe, in Parallel Processing in Neural Systems and Computers, edited by R. Eckmiller, G. Hartman, G. Hauske (Elsevier, Amsterdam, 1990), pp. 91–94Google Scholar
  15. 15.
    R. VanRullen, R. Guyonneau, S.J. Thorpe, Trends Neurosci. 28, 1 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Panzeri, R.S. Petersen, S.R. Schultz, M. Lebedev, M.E. Diamond, Neuron 29, 769 (2001)CrossRefGoogle Scholar
  17. 17.
    R.S. Petersen, S. Panzeri, M.E. Diamond, Biosystems 67, 187 (2002)CrossRefGoogle Scholar
  18. 18.
    S. Junek, E. Kludt, F. Wolf, D. Schild, Neuron 67, 872 (2010)CrossRefGoogle Scholar
  19. 19.
    S. Furukawa, J.C. Middlebrooks, J. Neurophysiol. 87, 1749 (2002) Google Scholar
  20. 20.
    P. Heil, Curr. Opin. Neurobiol. 14, 461 (2004)CrossRefGoogle Scholar
  21. 21.
    T.J. Gawne, T.W. Kjaer, B.J. Richmond, J. Neurophysiol. 76, 1356 (1996) Google Scholar
  22. 22.
    D.S. Reich, F. Mechler, J.D. Victor, J. Neurophysiol. 5, 1039 (2001)Google Scholar
  23. 23.
    E.V. Pankratova, A.V. Polovinkin, B. Spagnolo, Phys. Lett. A 344, 43 (2005)ADSMATHCrossRefGoogle Scholar
  24. 24.
    E.V. Pankratova, A.V. Polovinkin, E. Mosekilde, Eur. Phys. J. B 45, 391 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    H.C. Tuckwell, F.Y.M. Wan, Physica A 351, 427 (2005) ADSCrossRefGoogle Scholar
  26. 26.
    M. Ozer, L.J. Graham, Eur. Phys. J. B 61, 499 (2008)ADSMATHCrossRefGoogle Scholar
  27. 27.
    M. Ozer, M. Uzuntarla, Phys. Lett. A 372, 4603 (2008) ADSMATHCrossRefGoogle Scholar
  28. 28.
    M. Ozer, M. Uzuntarla, M. Perc, L.J. Graham, J. Theoretical Biol. 261, 83 (2009)CrossRefGoogle Scholar
  29. 29.
    Z. Pawlas, L.B. Klebanov, V. Benes, M. Prokesova, J. Popelar, P. Lansky, Neural Comput. 22, 1675 (2010) MATHCrossRefGoogle Scholar
  30. 30.
    G. Wainrib, M. Thieullen, K. Pakdaman, Biol. Cybern. 103, 43 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Raastad, J.F. Storm, P. Andersen, Eur. J. Neurosci. 4, 113 (1992) Google Scholar
  32. 32.
    C. Allen, C.F. Stevens, Proc. Natl. Acad. Sci. USA 91, 10380 (1994) ADSCrossRefGoogle Scholar
  33. 33.
    B. Katz, Nerve, Muscle and Synapse (McGrawHill, New York, 1996)Google Scholar
  34. 34.
    T. Branco, K. Staras, Nature Rev. Neurosci. 10, 373 (2009)CrossRefGoogle Scholar
  35. 35.
    A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952) Google Scholar
  36. 36.
    V. Braitenberg, A. Schuz, Anatomy of the Cortex: Statistics and Geometry (Springer-Verlag, Berlin, 1991)Google Scholar
  37. 37.
    N. Brunel, J. Comput. Neurosci. 8, 183 (2000)MATHCrossRefGoogle Scholar
  38. 38.
    W. Kinzel, J. Comput. Neurosci. 24, 105 (2007)MathSciNetCrossRefGoogle Scholar
  39. 39.
    A. Torcini, S. Luccioli, T. Kreuz, Neurocomputing 70, 1943 (2007) CrossRefGoogle Scholar
  40. 40.
    J. Friedrich, W. Kinzel, J. Comput. Neurosci. 27, 65 (2009)MathSciNetCrossRefGoogle Scholar
  41. 41.
    D.Q. Guo, C.G. Li, J. Theoretical Biol. 308, 105 (2012) CrossRefGoogle Scholar
  42. 42.
    C.G. Li, Q.X. Zheng, Phys. Biol. 7, 036010 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    D.Q. Guo, C.G. Li, J. Comput. Neurosci. 30, 567 (2011)MathSciNetCrossRefGoogle Scholar
  44. 44.
    D.Q. Guo, C.G. Li, Cogn. Neurodyn. 6, 75 (2012)CrossRefGoogle Scholar
  45. 45.
    A. Destexhe, M. Rudolph, J.M. Fellous, T.J. Sejnowski, Neuroscience 107, 13 (2001)CrossRefGoogle Scholar
  46. 46.
    S. Luccioli, T. Kreuz, A. Torcini, Phys. Rev. E 73, 041902 (2006) MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    M. Ozer, L.J. Graham, O. Erkaymaz, M. Uzuntarla, Neuroreport 18, 1371 (2007) CrossRefGoogle Scholar
  48. 48.
    N. Brunel, V. Hakim, Neural Comput. 11, 1621 (1999) CrossRefGoogle Scholar
  49. 49.
    W.B. Levy, R.A. Baxter, J. Neurosci. 22, 4746 (2002) Google Scholar
  50. 50.
    D.W. Sullivan, W.B. Levy, Neurocomputing 52, 397 (2003)CrossRefGoogle Scholar
  51. 51.
    M.S. Goldman, Neural Comput. 16, 1137 (2004) MATHCrossRefGoogle Scholar
  52. 52.
    J. Kestler, W. Kinzel, J. Phys. A: Math. Gen. 39, 461 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    P. Hänggi, Chem. Phys. Chem. 3, 285 (2002)CrossRefGoogle Scholar
  54. 54.
    L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    M. Perc, Eur. J. Phys. 27, 451 (2006)CrossRefGoogle Scholar
  56. 56.
    T. Kreuz, S. Luccioli, A. Torcini, Phys. Rev. Lett. 97, 238101 (2006) ADSCrossRefGoogle Scholar
  57. 57.
    X. Sun, M. Perc, Q. Lu, J. Kurths, Chaos 20, 033116 (2010) ADSCrossRefGoogle Scholar
  58. 58.
    S. Song, K. Miller, L.F. Abbott, Nat. Neurosci. 3, 919 (2000)CrossRefGoogle Scholar
  59. 59.
    M. Tsodyks, K. Pawelzik, H. Markram, Neural Comput. 10, 821 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Engineering Faculty, Department of Biomedical EngineeringBulent Ecevit UniversityZonguldakTurkey
  2. 2.Engineering Faculty, Department of Electrical-Electronics EngineeringBulent Ecevit UniversityZonguldakTurkey
  3. 3.Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduP.R. China
  4. 4.Computational Neuroscience UnitOkinawa Institute of Science and TechnologyOkinawaJapan

Personalised recommendations