Experimental and numerical study of the tantalum single crystal spallation

  • L. SoulardEmail author
  • J. Bontaz-Carion
  • J. P. Cuq-Lelandais
Regular Article


Using X-microtomography and non equilibrium classical molecular dynamics, we present a study of the elementary processes of spallation of single crystal tantalum. The single crystal is illuminated by a laser pulse which induces the propagation of a strong unsustained shock. The analysed data mainly are number and shape of pores resulting from the tensile inside the material when the incident shock reflects on the opposite face. Experimental pores size distribution exhibits two power laws attributed to the growth and the coalescence stages. The average pore shape is ellipsoid with main axis along the shock axis propagation. This first part is completed by a large scale molecular dynamics simulation mimics at reduced scale the real experiment. After preliminary calculations validating the chosen potential function the formation and shock propagation is detailed. Then we extract from the simulation similar data than in experiment. The pores size distribution shows three power laws identified as the nucleation, the growth and the coalescence stages. The slopes of the two last stages are very similar to the experimental one, confirming the scale invariance of this data as suggested by their analytical form. The general pore shape also is close to the experiment shape but with a different orientation (perpendicular to the shock propagation axis).


Solid State and Materials 


  1. 1.
    T. Antoun, L. Seaman, D.R. Curran, G.I. Kanel, S.V. Razorenov, A.V. Utkin, Spall Fracture (Springer-Verlag, New York, Inc., 2003)Google Scholar
  2. 2.
    J. Thouvenin, Détonique (Eyrolles, Paris, 1997)Google Scholar
  3. 3.
    A.K. Zurek, W.R. Thissel, J.N. Johnson, D.L. Tonks, R. Hixson, J. Mater. Process. Technol. 60, 261 (1996)CrossRefGoogle Scholar
  4. 4.
    F. Llorca, G. Roy, Shock Compression of Condensed Matter, edited by M.D. Furnish, Y.M. Gupta, J.W. Forbes (2003), pp. 589–592Google Scholar
  5. 5.
    J. Bontaz-Carion, Y.-P. Pellegrini, Adv. Eng. Mater. 8, 480 (2006)CrossRefGoogle Scholar
  6. 6.
    J.M. Rivas, A.K. Zurek, W.R. Thissell, D.L. Tonks, R.S. Hixson, Metall. Mater. Trans. A 31, 845 (2000)Google Scholar
  7. 7.
    M.D. Furnish, L.C. Chhabildas, W.D. Reinhart, T.J. Vogler, W.M. Trott, Int. J. Plast. 25, 587 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    M.D. Furnish, W.D. Reinhart, W.M. Trott, L.C. Chhabildas, T.J. Vogler, Shock Compression of Condensed Matter, edited by M.D. Furnish, M. Elert, T.P. Russel, C.T. White (2005), pp. 615–618Google Scholar
  9. 9.
    N.J. Wagner, B.L. Holian, A.F Voter, Phys. Rev. A 45, 8457 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    W.C. Morrey, L.T. Wille, Comput. Mater. Sci. 10, 432 (1998)CrossRefGoogle Scholar
  11. 11.
    A. Strachan, T. Cagin, W.A. Goddard III, Phys. Rev. B 63, 060103(R) (2001)ADSCrossRefGoogle Scholar
  12. 12.
    V. Dremov, A. Petrovtsev, Ph. Sapozhnikov, M. Smirnova, D.L. Preston, M.A. Zocher, Phys. Rev. B 74, 144110 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    S.-N. Luo, T.C. Germann, D.L. Tonks, Q. An, J. Appl. Phys. 108, 093526 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    J.-P. Cuq-Lelandais, Ph.D. Thesis, ENSMA, Poitiers, France, 2010Google Scholar
  15. 15.
    A.C. Mitchell, W.J. Nellis, J. Appl. Phys. 52, 3363 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Novikov, A.V. Chernov, Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki 5, 126 (1982)Google Scholar
  17. 17.
    G. Roy, Ph.D. Thesis, Poitiers University, France, 2003Google Scholar
  18. 18.
    J. Bontaz-Carion, M. Nicollet, Ph. Manczur, Y.-P. Pellegrini, E. Boller, J. Baruchet, Impact Engineering and Application edited by A. Chiba, S. Tanimura, K. Hokamoto (2001)Google Scholar
  19. 19.
    J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    Y.L. Donald, J. Siegel, J.B. Adams, X.-Y. Liu, Phys. Rev. B 67, 125101 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Z.-L. Liu, L.-C. Cai, X.-R. Chen, F.-Q. Jing, Phys. Rev. B 77, 024103 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    J.Y. Yang, R.T. Hong, M.J. Huang, Mater. Sci. Semicon. Process. 8, 622 (2005)CrossRefGoogle Scholar
  23. 23.
    R.A. Johnson, Phys. Rev. B 37, 3924 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    H.N.G. Wadley, X. Zhou, R.A. Johnson, M. Neirock, Prog. Mater. Sci. 46, 329 (2001)CrossRefGoogle Scholar
  25. 25.
    F.H. Featherston, J.R. Neighbours, Phys. Rev. 130, 1324 (1963)ADSCrossRefGoogle Scholar
  26. 26.
    H. Cynn, C.S. Yoo, Phys. Rev. B 59, 8526 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    M. Hanfland, K. Syassena, J. Kohler, J. Appl. Phys. 91, 4143 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    A. Dewaele, P. Loubeyre, M. Mezouar, Phys. Rev. B 70, 094112 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    A.K. Verma, R.S. Rao, B.K. Godwal, J. Phys.: Condens. Matter 16, 4799 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Wang, R. Ahuja, B. Johansson, J. Appl. Phys. 92, 6616 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Z.-L. Liu, L.-C. Cai, X.-R. Chen, Q. Wu, F.-Q. Jing, J. Phys.: Condens. Matter 21, 095408 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Z.-L. Liu, X.-L. Zhang, L.-C. Cai, X.-R. Chen, Q. Wu, F.-Q. Jing, J. Phys. Chem. Sol. 69, 2833 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    R.E. Cohen, O. Gülseren, Phys. Rev. B 63, 224101 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    W.J. Nellis, A.C. Mitchell, D.A. Young, J. Appl. Phys. 93, 304 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    J.-B. Maillet, G. Stoltz, Appl. Math. Res. Express abn004 (2009)Google Scholar
  36. 36.
    L. Soulard, Shock Compression of Condensed Matter edited by M.D. Furnish, L.C. Chhabildas, R.S. Hixson (1999), p. 185Google Scholar
  37. 37.
    J.-B. Maillet, M. Mareschal, L. Soulard, R. Ravelo, P.S. Lomdahl, T.C. Germann, B.L. Holian, Phys. Rev. E 63, 016121 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    C. Dai, J. Hu, H. Tan, J. Appl. Phys. 106, 043519 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    A. Dewaele, M. Mezouar, N. Guignot, P. Loubeyre, Phys. Rev. Lett. 104, 255701 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    D. Errandonea, B. Schwager, R. Ditz, Ch. Gessmann, R. Boehler, M. Ross, Phys. Rev. B 63, 132104 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    D. Errandonea, M. Somayazulu, D. Häusermann, H.K. Mao, J. Phys.: Condens. Matter 15, 7635 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    M. Foata-Prestavoine, G. Robert, M.-H. Nadal, S. Bernard, Phys. Rev. B 76, 104104 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    S.-N. Luo, D.C. Swift, Physica B 388, 139 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    F. Xi, L. Cai, Physica B 403, 2065 (2008)ADSCrossRefGoogle Scholar
  45. 45.
    J.A. Moriarty, J.F. Belak, R.E. Rudd, P. Söderlind, F.H. Streitz, Lin H Yang, J. Phys.: Condens. Matter 14, 2825 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman. Sov. Phys. JETP 39, 375 (1974)ADSGoogle Scholar
  47. 47.
    S.-S. Wellershoff, J. Hohlfeld, J. Güde, E. Matthias, Appl. Phys. A 69, S99 (2003)Google Scholar
  48. 48.
    R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Phys. Rev. Lett. 58, S1680 (1987)ADSCrossRefGoogle Scholar
  49. 49.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    L. Soulard, Eur. Phys. J. D 50, 241 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, P.S. Komarov, A.V. Ovchinnikov, V.E. Fortov, V.A. Khokhlov, V.V. Shepelev, JETP Lett. 91, 517 (2010)CrossRefGoogle Scholar
  52. 52.
    V.V. Zhakhovskii, N.A. Inogamov, JETP Lett. 92, 521 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, I.I. Oleynik, Phys. Rev. B 82, 064113 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    F. Family, P. Meakin, Phys. Rev. Lett. 61, 428 (1988)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • L. Soulard
    • 1
    Email author
  • J. Bontaz-Carion
    • 1
  • J. P. Cuq-Lelandais
    • 2
    • 3
  1. 1.CEA, DAM, DIFArpajonFrance
  2. 2.CEA, DAM, ValducIs-sur-TilleFrance
  3. 3.Institut PPRIME, UPR 3346, CNRS, ENSMAUniversité de PoitiersFuturoscope CedexFrance

Personalised recommendations