Advertisement

Transport across nanogaps using self-consistent boundary conditions

  • D. BiswasEmail author
  • R. Kumar
Regular Article

Abstract

Charge particle transport across nanogaps is studied theoretically within the Schrodinger-Poisson mean field framework. The determination of self-consistent boundary conditions across the gap forms the central theme in order to allow for realistic interface potentials (such as metal-vacuum) which are smooth at the boundary and do not abruptly assume a constant value at the interface. It is shown that a semiclassical expansion of the transmitted wavefunction leads to approximate but self consistent boundary conditions without assuming any specific form of the potential beyond the gap. Neglecting the exchange and correlation potentials, the quantum Child-Langmuir law is investigated. It is shown that at zero injection energy, the quantum limiting current density (J c ) is found to obey the local scaling law J c V g α /D 5-2α with the gap separation D and voltage V g . The exponent α > 1.1 with α → 3/2 in the classical regime of small de Broglie wavelengths.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    S. Bhattacharjee, T. Chowdhury, Appl. Phys. Lett. 95, 061501 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    H.M. Wang, Z. Zheng, Y.Y. Wang, J.J. Qiu, Z.B. Guo, Z.X. Shen, T. Yu, Appl. Phys. Lett. 96, 023106 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    S. Sun, L.K. Ang, D. Shiffler, J.W. Luginsland, Appl. Phys. Lett. 99, 013112 (2011) ADSCrossRefGoogle Scholar
  4. 4.
    P. Maksymovych, M. Pan, P. Yu, R. Ramesh, A.P. Baddorf, S.V. Kalinin, Nanotechnology 22, 254031 (2011) ADSCrossRefGoogle Scholar
  5. 5.
    C.D. Child, Phys. Rev. Ser. 1 32, 492 (1911)Google Scholar
  6. 6.
    I. Langmuir, Phys. Rev. 2, 450 (1913)ADSCrossRefGoogle Scholar
  7. 7.
    Y.Y. Lau, Phys. Rev. Lett. 87, 278301 (2001) ADSCrossRefGoogle Scholar
  8. 8.
    J.W. Luginsland, Y.Y. Lau, R.M. Gilgenbach, Phys. Rev. Lett. 77, 4668 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    R.R. Puri, D. Biswas, R. Kumar, Phys. Plasmas 11, 1178 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    A. Rokhlenko, J.L. Lebowitz, J. Appl. Phys. 110, 033306 (2011) CrossRefGoogle Scholar
  11. 11.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    A. Kiejna, K.F. Wojciechowski, Metal Surface Electron Physics (Pergamon, Oxford, 1996)Google Scholar
  13. 13.
    Y.Y. Lau, D. Chernin, D.G. Colombant, P.-T. Ho, Phys. Rev. Lett. 66, 1446 (1991) ADSCrossRefGoogle Scholar
  14. 14.
    S.J. Singer, S. Lee, K.F. Freed, J. Chem. Phys. 91, 240 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    L.K. Ang, T.J.T. Kwan, Y.Y. Lau, Phys. Rev. Lett. 91, 208303 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    L.K. Ang, Y.Y. Lau, T.J.T. Kwan, IEEE Trans. Plasma Sci. 32, 410 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Theoretical Physics DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations