Advertisement

Exploiting the flexibility of a family of models for taxation and redistribution

  • M. L. Bertotti
  • G. Modanese
Regular Article

Abstract

We discuss a family of models expressed by nonlinear differential equation systems describing closed market societies in the presence of taxation and redistribution. We focus in particular on three example models obtained in correspondence to different parameter choices. We analyse the influence of the various choices on the long time shape of the income distribution. Several simulations suggest that behavioral heterogeneity among the individuals plays a definite role in the formation of fat tails of the asymptotic stationary distributions. This is in agreement with results found with different approaches and techniques. We also show that an excellent fit for the computational outputs of our models is provided by the κ-generalized distribution introduced by Kaniadakis in [Physica A 296, 405 (2001)].

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A. Drăgulescu, V.M. Yakovenko, Eur. Phys. J. B 17, 723 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    A. Chakraborti, B.K. Chakrabarti, Eur. Phys. J. B 17, 167 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    F.C. Figueira, N.J. Moura Jr., M.B. Ribeiro, Physica A 390, 689 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    A. Chatterjee, B.K. Chakrabarti, Eur. Phys. J. B 60, 135 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    B. Düring, D. Matthes, G. Toscani, Riv. Mat. Univ. Parma 1, 199 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    V.M. Yakovenko, in Encyclopedia of Complexity and System Science, edited by R.A. Meyer (Springer, 2009), pp. 247–272Google Scholar
  7. 7.
    V.M. Yakovenko, J.B. Rosser, J. Rev. Mod. Phys. 81, 1703 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    M.L. Bertotti, G. Modanese, Physica A 390, 3782 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    M.L. Bertotti, Appl. Math. Comput. 217, 752 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    V. Pareto, Course d’Economie Politique (Rouge, Lausanne, 1896)Google Scholar
  11. 11.
    A. Chatterjee, B.K. Chakrabarti, S.S. Manna, Physica A 335, 155 (2004)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    M. Patriarca, E. Heinsalu, A. Chakraborti, Eur. Phys. J. B 73, 145 (2010)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    D. Matthes, G. Toscani, J. Statist. Phys. 130, 1087 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    G. Kaniadakis, Physica A 296, 405 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 15.
    F. Clementi, M. Gallegati, G. Kaniadakis, Eur. Phys. J. B 52, 187 (2007)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    F. Clementi, T. Di Matteo, M. Gallegati, G. Kaniadakis, Physica A 387, 3201 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    F. Clementi, M. Gallegati, in Econophysics of Wealth Distributions, edited by A. Chatterjee, S. Yarlagadda, B.K. Chakrabarti (Springer, 2005), pp. 3–14Google Scholar
  18. 18.
    J.P. Bouchaud, M. Mezard, Physica A 282, 536 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    N. Scafetta, B.J. West, S. Picozzi, Physica D 193, 338 (2004)ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    F. Slanina, Phys. Rev. E 69, 046102 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    S.D. Guala, Interdisciplinary Description of Complex Systems 7, 1 (2009)ADSGoogle Scholar
  22. 22.
    L. Amoroso, Ann. Mat. Pura Appl. 21, 123 (1925)MathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. L. Bertotti
    • 1
  • G. Modanese
    • 1
  1. 1.Faculty of Science and TechnologyFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations