Kolmogorov turbulence, Anderson localization and KAM integrability

Regular Article

Abstract

The conditions for emergence of Kolmogorov turbulence, and related weak wave turbulence, in finite size systems are analyzed by analytical methods and numerical simulations of simple models. The analogy between Kolmogorov energy flow from large to small spacial scales and conductivity in disordered solid state systems is proposed. It is argued that the Anderson localization can stop such an energy flow. The effects of nonlinear wave interactions on such a localization are analyzed. The results obtained for finite size system models show the existence of an effective chaos border between the Kolmogorov-Arnold-Moser (KAM) integrability at weak nonlinearity, when energy does not flow to small scales, and developed chaos regime emerging above this border with the Kolmogorov turbulent energy flow from large to small scales.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941)ADSGoogle Scholar
  2. 2.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 32, 19 (1941) (in Russian) (English trans. Proc. R. Soc. Ser. A 434, 19 (1991))Google Scholar
  3. 3.
    A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 434, 15 (1991)MathSciNetMATHGoogle Scholar
  4. 4.
    A.M. Obukhov, Izv. AN SSSR Ser. Geogr. Geofiz. 5, 453 (1941) (in Russian)Google Scholar
  5. 5.
    V.E. Zakharov, N.N. Filonenko, J. Appl. Mech. Tech. Phys. 8, 37 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    V.E. Zhakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence (Springer-Verlag, Berlin, 1992)Google Scholar
  7. 7.
    S. Nazarenko, Wave Turbulence (Springer-Verlag, Berlin 2011)Google Scholar
  8. 8.
    A.C. Newell, V.E. Zhakharov, Phys. Rev. Lett. 69, 1149 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    A.A. Vedenov, E.P. Velikhov, R.Z. Sagdeev, Nucl. Fus. 1, 82 (1961)CrossRefGoogle Scholar
  10. 10.
    E. Fermi, J. Pasta, S. Ulam, M. Tsingou, Studies of nonlinear problems. I, Los Alamos Report No. LA-1940, 1955 (unpublished)Google Scholar
  11. 11.
    E. Fermi, Collected Papers (University of Chicago Press, Chicago, 1965), Vol. 2, p. 978Google Scholar
  12. 12.
    F.M. Izrailev, B.V. Chirikov, Dokl. Akad. Nauk SSSR 166, 57 (1988) (in Russian) (English trans. Sov. Phys. Doklady 11, 30 (1966))Google Scholar
  13. 13.
    The Fermi-Pasta-Ulam problem, in Springer Lecture Notes in Physics, edited by G. Gallavotti (2008), Vol. 728Google Scholar
  14. 14.
    G. Benettin, R. Livi, A. Ponno, J. Stat. Phys. 135, 873 (2009)MathSciNetADSMATHCrossRefGoogle Scholar
  15. 15.
    D.L. Shepelyansky, Nonlinearity 10, 1331 (1997)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    B.V. Chirikov, Phys. Rep. 52, 263 (1979)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics (Springer, Berlin, 1992)Google Scholar
  18. 18.
    D. Shepelyansky, Scholarpedia 4, 8567 (2009)CrossRefGoogle Scholar
  19. 19.
    B.V. Chirikov, V.V. Vecheslavov, Sov. Phys. JETP 85, 616 (1997) [Zh. Eksp. Teor. Fiz. 112, 1132 (1997)]ADSCrossRefGoogle Scholar
  20. 20.
    M. Mulansky, K. Ahnert, A. Pikovsky, D.L. Shepelyansky, J. Stat. Phys. 145, 1256 (2011)MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    S. Lukaschuk, S. Nazarenko, S. McLelland, P. Denissenko, Phys. Rev. Lett. 103, 044501 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    D. Snouck, M.-T. Westa, W. van de Water, Phys. Fluids 21, 025102 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    P.J. Cobelli, V. Pagneux, A. Maurel, P. Petitjeans, J. Fluid Mech. 666, 445 (2011)MATHCrossRefGoogle Scholar
  24. 24.
    Y.V. Lvov, S. Nazarenko, B. Pokorni, Physica D 218, 24 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  25. 25.
    S. Nazarenko, M. Onorato, Physica D 219, 1 (2006)MathSciNetADSMATHCrossRefGoogle Scholar
  26. 26.
    E. Kartashova, Phys. Rev. Lett. 98, 214502 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    E. Kartashova, S. Nazarenko, O. Rudenko, Phys. Rev. E 78, 016304 (2008)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    D. Proment, S. Nazarenko, M. Onorato, Phys. Rev. A 80, R056103 (2009)CrossRefGoogle Scholar
  29. 29.
    E. Kartashova, Europhys. Lett. 87, 44001 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    N. Sasa, T. Kano, M. Machida, V.S. Lâvov, O. Rudenko, M. Tsubota, Phys. Rev. B 84, 054525 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  32. 32.
    E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, Cambridge, 2007)Google Scholar
  33. 33.
    D.L. Shepelyansky, Phys. Rev. Lett. 70, 1787 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    D.L. Shepelyansky, Physica D 86, 45 (1995)MATHCrossRefGoogle Scholar
  35. 35.
    M.I. Molina, Phys. Rev. B 58, 12547 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    A.S. Pikovsky, D.L. Shepelyansky, Phys. Rev. Lett. 100, 094101 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    S. Tietsche, A. Pikovsky, Europhys. Lett. 84, 10006 (2008)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    J. Bourgain, W.-M. Wang, J. Eur. Math. Soc. 10, 1 (2008)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    S. Fishman, Y. Krivolapov, A. Soffer, in Nonlinearity arXiv:1108.2956 (2011)Google Scholar
  40. 40.
    I. Garcia-Mata, D.L. Shepelyansky, Eur. Phys. J. B 71, 121 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    S. Flach, D.O. Krimer, C. Skokos, Phys. Rev. Lett. 102, 024101 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    T.V. Laptyeva, J.D. Bodyfelt, D.O. Krimer, Ch. Skokos, S. Flach, Europhys. Lett. 91, 30001 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    M. Mulansky, A. Pikovsky, Europhys. Lett. 90, 10015 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    M. Johansson, G. Kopidakis, S. Aubry, Europhys. Lett. 91, 50001 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    A. Pikovsky, S. Fishman, Phys. Rev. E 83, 025201 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, Sov. Scient. Rev. C 2, 209 (1981) [Sec. Math. Phys. Rev.], Harwood Acad. Publ., Chur, SwitzerlandMathSciNetMATHGoogle Scholar
  47. 47.
    B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, Physica D 33, 77 (1988)MathSciNetADSMATHCrossRefGoogle Scholar
  48. 48.
    S. Fishman, D.R. Grempel, R.E. Prange, Phys. Rev. Lett. 49, 509 (1982)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    D.L. Shepelyansky, Physica D 28, 103 (1987)ADSCrossRefGoogle Scholar
  50. 50.
    F. Benvenuto, G. Casati, A.S. Pikovsky, D.L. Shepelyansky, Phys. Rev. A 44, R3423 (1991)MathSciNetADSCrossRefGoogle Scholar
  51. 51.
    M. Raizen, D.A. Steck, Scholarpedia 6, 10468 (2011)CrossRefGoogle Scholar
  52. 52.
    A. Ullah, M.D. Hoogerland, Phys. Rev. E 83, 046218 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    G. Gligoric, J.D. Bodyfelt, S. Flach, Europhys. Lett. 96, 30004 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    Wikipedia contributors, Aliasing (Wikipedia, The Free Encyclopedia, 2012)Google Scholar
  55. 55.
    A.S. Pikovsky, private comminication, 2011Google Scholar
  56. 56.
    D.L. Shepelyansky, Phys. Rev. B 61, 4588 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    S. Fishman, Scholarpedia 5, 9816 (2010)CrossRefGoogle Scholar
  58. 58.
    D. Shepelyansky, Scholarpedia 7, 9795 (2012)Google Scholar
  59. 59.
    I.P. Kornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory (Springer, New York, 1982)Google Scholar
  60. 60.
    H.-J. Stöckmann, Scholarpedia 5, 10243 (2010)CrossRefGoogle Scholar
  61. 61.
    T. Prosen, D.L. Shepelyansky, Eur. Phys. J. B 46, 515 (2005)ADSCrossRefGoogle Scholar
  62. 62.
    I. Garcia-Mata, D.L. Shepelyansky, Eur. Phys. J. B 71, 121 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    F. Borgonovi, D.L. Shepelyansky, J. Phys. I 6, 287 (1996)CrossRefGoogle Scholar
  64. 64.
    D.L. Shepelyansky, Anderson transition in three and four effective dimensions for the frequency modulated kicked rotator (2011), arXiv:1102.4450Google Scholar
  65. 65.
    J. Chabe, G. Lemarie, B. Gremaud, D. Delande, P. Szriftgiser, J.C. Garreau, Phys. Rev. Lett. 101, 255702 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Laboratoire de Physique Théorique du CNRS, IRSAMCUniversité de Toulouse, UPSToulouseFrance

Personalised recommendations