Advertisement

Thermoelectric effects of a laterally coupled double-quantum-dot structure

  • C. Jiang
  • W. J. Gong
  • Y. S. ZhengEmail author
Regular Article

Abstract

We investigate the thermoelectric properties of a laterally coupled double-quantum-dot structure. For this structure, a one-dimensional quantum dot (QD) chain between two leads forms a main channel for electron transmission, and each QD in the chain laterally couples to an additional QD. It is found that at low temperature, similar insulating bands emerge around the antiresonant points in the electronic and thermal conductance spectra. And, the edges of the insulating bands become steep rapidly with the increase of QD numbers. What’s interesting is that striking thermoelectric effect exists in the energy region where the insulating bands appear. Furthermore, with the formation of the insulation bands, the magnitude of the Seebeck coefficient becomes stable, whereas the thermoelectric efficiency is increased. By plotting the Lorentz number spectrum, we observe that in such a structure, the Lorentz number strongly violates the Wiedemann-Franz law in the insulating-band region with its maximum at the point of antiresonance. When weak intradot Coulomb interaction is taken into account, the weakened thermoelectric effect can still be improved with the increase of QD numbers.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    F. Giazotto, T.T. Heikkilā, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    M.F. Ódwyer, R.A. Lewis, C. Zhang, T.E. Humphrey, Phys. Rev. B 72, 205330 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Dubi, M.D. Ventra, Rev. Mod. Phys. 83, 131 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    G. Mahan, B. Sales, J. Sharp, Phys. Today 50, 42 (1997)CrossRefGoogle Scholar
  5. 5.
    G. Grosso, G.P. Parravicini, Solid State Physics (Academic Press, Amsterdam, 2000)Google Scholar
  6. 6.
    P. Reddy, S.Y. Jang, R.A. Segalman, A. Majumdar, Science 315, 1568 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007)CrossRefGoogle Scholar
  8. 8.
    Z. Wang, J.A. Carter, A. Lagutchev, Y.K. Koh, N.-H. Seong, D.G. Cahill, D.D. Dlott, Science 317, 787 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    P. Murphy, S. Mukerjee, J. Moore, Phys. Rev. B 78, 161406(R) (2008)ADSGoogle Scholar
  10. 10.
    O. Karlström, H. Linke, G. Karlström, A. Wacker, Phys. Rev. B 84, 113415 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    A.S. Dzurak, C.G. Smith, C.H.W. Barnes, M. Pepper, L. Martin-Moreno, C.T. Liang, D.A. Ritchie, G.A.C. Jones, Phys. Rev. B 55, R10197 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    A.A.M. Staring, L.W. Molenkamp, B.W. Alpenaar, H. van Houten, O.J.A. Buyk, M.A.A. Mabesoone, C.W.J. Beenakker, C.T. Foxon, Europhys. Lett. 22, 57 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    L.W. Molenkamp, A.A.M. Staring, B.W. Alphenaar, H. van Houten, C.W.J. Beenakker, Semicond. Sci. Technol. 9, 903 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    C.W.J. Beenakker, A.A.M. Staring, Phys. Rev. B 46, 9667 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    Y.M. Lin, M.S. Dresselhaus, Phys. Rev. B 68, 075304 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    R. Scheibner, H. Buchmann, D. Reuter, M.N. Kiselev, L.W. Molenkamp, Phys. Rev. Lett. 95, 176602 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    D. Boese, R. Fazio, Europhys. Lett. 56, 576 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    X. Zianni, Phys. Rev. B 75, 045344 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    B. Dong, X.L. Lei, J. Phys.: Condens. Matter 14, 11747 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    M. Krawiec, K.I. Wysokiński, Phys. Rev. B 73, 075307 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    B. Kubala, J. Konig, Phys. Rev. B 73, 195316 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    B. Kubala, J. Konig, J. Pekola, Phys. Rev. Lett. 100, 066801 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    T.A. Costi, V. Zlatic, Phys. Rev. B 81, 235127 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    J. Liu, Q.F. Sun, X.C. Xie, Phys. Rev. B 81, 245323 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    M. Tsaousidou, G.P. Triberis, J. Phys.: Condens. Matter 22, 355304 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Dubi, M. Di Ventra, Phys. Rev. B 79, 081302 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    R. Śirkowicz, M. Wierzbicki, J. Barnaś, Phys. Rev. B 80, 195409 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    D.M.-T. Kuo, Yia-Chung Chang, Phys. Rev. Lett. 95, 066801 (2005)CrossRefGoogle Scholar
  32. 32.
    G.A. Lara, P.A. Orellana, E.V. Anda, Phys. Rev. B 78, 045323 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    B. Dong, X.L. Lei, N.J.M. Horing, Phys. Rev. B 77, 085309 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    R. Leturcq, L. Schmid, K. Ensslin, Y. Meir, D.C. Driscoll, A.C. Gossard, Phys. Rev. Lett. 95, 126603 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    T. Kuzmenko, K. Kikoin, Y. Avishai, Phys. Rev. Lett. 96, 046601 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    J.C. Chen, A.M. Chang, M.R. Melloch, Phys. Rev. Lett. 92, 176801 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    K.-W. Chen, C.-R. Chang, Phys. Rev. B 78, 235319 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Z. Jiang, Q.-Z. Han, Phys. Rev. B 78, 035307 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    K. Bao, Y. Zheng, Phys. Rev. B 73, 045306 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    D.M.-T. Kuo, S.-Y. Shiau, Y. Chang, Phys. Rev. B 84, 245303 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    T.-S. Kim, S. Hershfield, Phys. Rev. Lett. 88, 136601 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    Y.M. Blanter, C. Bruder, R. Fazio, H. Schoeller, Phys. Rev. B 55, 4069 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    R. Franco, J. Silva-Valencia, M.S. Figueira, J. Appl. Phys. 103, 07B726 (2008)CrossRefGoogle Scholar
  44. 44.
    M. Wierzbicki, R. Swirkowicz, Phys. Rev. B 84, 075410 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    Y.S. Liu, X.F. Yang, J. Appl. Phys. 108, 023710 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    O. Karlström, H. Linke, G. Karlström, A. Wacker, Phys. Rev. B 84, 113415 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    P. Trocha, J. Barnaś, Phys. Rev. B 85, 085408 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Y.-S. Liu, D.-B. Zhang, X.-F. Yang, J.-F. Feng, Nanotechnology 22, 225201 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto, Y. Iye, Phys. Rev. Lett. 95, 066801 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    K. Kobayashi, H. Aikawa, A. Sano, S. Katsumoto, Y. Iye, Phys. Rev. B 70, 035319 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)ADSCrossRefGoogle Scholar
  52. 52.
    A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)ADSCrossRefGoogle Scholar
  53. 53.
    C. Lacroix, J. Phys. F: Met. Phys. 11, 2389 (1981)ADSCrossRefGoogle Scholar
  54. 54.
    W.-R. Lee, J.U. Kim, H.-S. Sim, Phys. Rev. B 77, 033305 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    R. Kirkowicz, M. Wierzbicki, J. Barnaś, Phys. Rev. B 80, 195409 (2010)CrossRefGoogle Scholar
  56. 56.
    F. Chi, J. Zheng, L.-L. Sun, J. Appl. Phys. 104, 043707 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    K.-W. Chen, C.-R. Chang, Phys. Rev. B 78, 235319 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Y. Ying, G. Jin, Appl. Phys. Lett. 96, 093104 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    W. Gong, Y. Zheng, Y. Liu, T. Lu, Phys. Rev. B 73, 245329 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    W.J. Gong, C. Jiang, X. Sui, A. Du, J. Phys. Soc. Jpn 81, 104601 (2012)CrossRefGoogle Scholar
  61. 61.
    S. Kiravittaya, A. Rastelli, O.G. Schmidt, Rep. Prog. Phys. 72, 046502 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.National Laboratory of Superhard Materials, Department of PhysicsJilin UniversityChangchunP.R. China
  2. 2.College of SciencesNortheastern UniversityShenyangP.R. China

Personalised recommendations