Advertisement

Dielectric signature of charge order in lanthanum nickelates

  • P. Sippel
  • S. Krohns
  • E. Thoms
  • E. Ruff
  • S. Riegg
  • H. Kirchhain
  • F. Schrettle
  • A. Reller
  • P. LunkenheimerEmail author
  • A. Loidl
Regular Article

Abstract

Three charge-ordering lanthanum nickelates La2−x A x NiO4, substituted with specific amounts of A = Sr, Ca, and Ba to achieve commensurate charge order, are investigated using broadband dielectric spectroscopy up to GHz frequencies. The transition temperatures of the samples are characterized by additional specific heat and magnetic susceptibility measurements. We find colossal magnitudes of the dielectric constant for all three compounds and strong relaxation features, which partly are of Maxwell-Wagner type arising from electrode polarization. Quite unexpectedly, the temperature-dependent colossal dielectric constants of these materials exhibit distinct anomalies at the charge-order transitions. This phenomenon is ascribed to a variation of intrinsic material properties affecting the formation of depletion layers at the electrode-sample interfaces.

Keywords

Solid State and Materials 

References

  1. 1.
    A.P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    M.M. Qazilbash, J.J. Hamlin, R.E. Baumbach, Lijun Zhang, D.J. Singh, M.B. Maple, D.N. Basov, Nature Phys. 5, 647 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    E. Dagotto, Science 309, 257 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Eur. Phys. J. Special Topics 180 (2010)Google Scholar
  5. 5.
    J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Nature 375, 561 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    P.G. Radaelli, D.E. Cox, M. Marezio, S.-W. Cheong, Phys. Rev. B 55, 3015 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    S.-W. Cheong, H.Y. Hwang, C.H. Chen, B. Batlogg, L.W. Rupp Jr., S.A. Carter, Phys. Rev. B 49, 7088 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    F. Rivadulla, M.A. López-Quintela, L.E. Hueso, C. Jardón, A. Fondado, J. Rivas, M.T. Causa, R.D. Sánchez, Solid State Commun. 110, 179 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    A.I. Smirnov, M.N. Popova, A.B. Sushkov, S.A. Golubchik, D.I. Khomskii, M.V. Mostovoy, A.N. Vasil’ev, M. Isobe, Y. Ueda, Physica B 284-288, 1653 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    S. Mercone, A. Wahl, A. Pautrat, M. Pollet, C. Simon, Phys. Rev. B 69, 174433 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    J. Rivas, B. Rivas-Murias, A. Fondado, J. Mira, M.A. Señarís-Rodríguez, Appl. Phys. Lett. 85, 6224 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    T. Park, Z. Nussinov, K.R.A. Hazzard, V.A. Sidorov, A.V. Balatsky, J.L. Sarrao, S.-W. Cheong, M.F. Hundley, J.-S. Lee, Q.X. Jia, J.D. Thompson, Phys. Rev. Lett. 94, 017002 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    B. Rivas-Murias, J. Mira, A. Fondado, M.A. Señarís-Rodríguez, J. Rivas, J. Bol. Soc. Esp. Ceram. V. 45, 169 (2006)CrossRefGoogle Scholar
  14. 14.
    X.Q. Liu, S.Y. Wu, X.M. Chen, H.Y. Zhu, J. Appl. Phys. 104, 054114 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    M. Filippi, B. Kundys, S. Agrestini, W. Prellier, H. Oyanagi, N.L. Saini, J. Appl. Phys. 106, 104116 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    S. Krohns, P. Lunkenheimer, Ch. Kant, A.V. Pronin, H.B. Brom, A.A. Nugroho, M. Diantoro, A. Loidl, Appl. Phys. Lett. 94, 122903 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    V. Efremov, J. van den Brink, D.I. Khomskii, Nature Mater. 3, 853 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, H. Kitô, Nature 436, 1136 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    J. van den Brink, D.I. Khomskii, J. Phys.: Condens. Matter 20, 434217 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    A.M.L. Lopes, J.P. Araújo, V.S. Amaral, J.G. Correia, Y. Tomioka, Y. Tokura, Phys. Rev. Lett. 100, 155702 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Phys. Rev. B 66, 052105 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Eur. Phys. J. Special Topics 180, 61 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    P. Ren, Z. Yang, W.G. Zhu, C.H.A. Huan, L. Wang, J. Appl. Phys. 109, 074109 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    C.H. Chen, S.W. Cheong, A.S. Cooper, Phys. Rev. Lett. 71, 2461 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    V. Sachan, D.J. Buttrey, J.M. Tranquada, J.E. Lorenzo, G. Shirane, Phys. Rev. B 51, 12742 (1995)ADSCrossRefGoogle Scholar
  27. 27.
    H. Yoshizawa, T. Kakeshita, R. Kajimoto, T. Tanabe, T. Katsufuji, Y. Tokura, Phys. Rev. B 61, R854 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    M. Hücker, K. Chung, M. Chand, T. Vogt, J.M. Tranquada, D.J. Buttrey, Phys. Rev. B 70, 064105 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    J. Li, Y. Zhu, J.M. Tranquada, K. Yamada, D.J. Buttrey, Phys. Rev. B 67, 012404 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    H. Eisaki, S. Uchida, T. Mizokawa, H. Namatame, A. Fujimori, J. van Elp, P. Kuiper, G.A. Sawatzky, S. Hosoya, H. Katayama-Yoshida, Phys. Rev. B 45, 12513 (1992)ADSCrossRefGoogle Scholar
  31. 31.
    S.H. Han, M.B. Maple, Z. Fisk, S.-W. Cheong, A.S. Cooper, O. Chmaissem, J.D. Sullivan, M. Marezio, Phys. Rev. B 52, 1347 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    N. Poirot, M. Zaghrioui, Solid State Sci. 8, 149 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, A. Loidl, Nature Mater. 10, 899 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    K. Ishizaka, T. Arima, Y. Murakami, R. Kajimoto, H. Yoshizawa, N. Nagaosa, Y. Tokura, Phys. Rev. Lett. 92, 196404 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    K. Ruck, G. Krabbes, I. Vogel, Mater. Res. Bull. 34, 1689 (1999)CrossRefGoogle Scholar
  36. 36.
    A.B. Austin, L.G. Carreiro, J.V. Marzik, Mater. Res. Bull. 24, 639 (1989)CrossRefGoogle Scholar
  37. 37.
    P.J. Heaney, A. Mehta, G. Sarosi, V.E. Lamberti, A. Navrotsky, Phys. Rev. B 57, 10370 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    J.P. Tang, R.I. Dass, A. Manthiram, Mater. Res. Bull. 35, 411 (2000)CrossRefGoogle Scholar
  39. 39.
    U. Schneider, P. Lunkenheimer, A. Pimenov, R. Brand, A. Loidl, Ferroelectrics 249, 89 (2001)CrossRefGoogle Scholar
  40. 40.
    R. Böhmer, M. Maglione, P. Lunkenheimer, A. Loidl, J. Appl. Phys. 65, 901 (1989)ADSCrossRefGoogle Scholar
  41. 41.
    R. Klingeler, B. Büchner, S.-W. Cheong, M. Hücker, Phys. Rev. B 72, 104424 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    V. Bobnar, P. Lunkenheimer, J. Hemberger, A. Loidl, F. Lichtenberg, J. Mannhart, Phys. Rev. B 65, 155115 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    V. Bobnar, P. Lunkenheimer, M. Paraskevopoulos, A. Loidl, Phys. Rev. B 65, 184403 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    A.K. Jonscher, Dielectric Relaxations in Solids (Chelsea Dielectrics, London, 1983)Google Scholar
  45. 45.
    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 172102 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, J. Appl. Phys. 103, 084107 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    A. Seeger, P. Lunkenheimer, J. Hemberger, A.A. Mukhin, V. Yu. Ivanov, A.M. Balbashov, A. Loidl, J. Phys.: Condens. Matter 11, 3273 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    T. Katsufuji, T. Tanabe, T. Ishikawa, Y. Fukuda, T. Arima, Y. Tokura, Phys. Rev. B 54, 14230 (1996)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. Sippel
    • 1
  • S. Krohns
    • 1
  • E. Thoms
    • 1
  • E. Ruff
    • 1
  • S. Riegg
    • 1
  • H. Kirchhain
    • 1
  • F. Schrettle
    • 1
  • A. Reller
    • 2
  • P. Lunkenheimer
    • 1
    Email author
  • A. Loidl
    • 1
  1. 1.Experimental Physics V, Center for Electronic Correlations and Magnetism, University of AugsburgAugsburgGermany
  2. 2.Department for Resource Strategy, University of AugsburgAugsburgGermany

Personalised recommendations