Advertisement

Pecularities of Hall effect in GaAs/δ〈Mn〉/GaAs/InxGa1−xAs/ GaAs (x ≈ 0.2) heterostructures with high Mn content

  • M. A. Pankov
  • B. A. Aronzon
  • V. V. Rylkov
  • A. B. Davydov
  • V. V. Tugushev
  • S. CapraraEmail author
  • I. A. Likhachev
  • E. M. Pashaev
  • M. A. Chuev
  • E. Lähderanta
  • A. S. Vedeneev
  • A. S. Bugaev
Regular Article

Abstract

The transport properties of GaAs/δ〈Mn〉/GaAs/In x Ga1−x As/GaAs structures containing an In x Ga1−x As (x ≈ 0.2) quantum well (QW) and a Mn delta layer (DL) with relatively high content, about one Mn monolayer (ML), are studied. In these structures the DL is separated from the QW by GaAs spacer with thickness d s = 2–5 nm. All structures possess a non-metallic character of conductivity and display a maximum in the resistance temperature dependence R xx (T) at the temperature ≈ 46 K, which is usually associated with the Curie temperature T C of ferromagnetic (FM) transition in DL. However, it is found that the Hall effect concentration of holes p H in the QW does not decrease below T C as one ordinary expects in similar systems. On the contrary, the dependence p H (T) experiences a minimum at T = 80–100 K depending on the spacer thickness, then increases at low temperatures more strongly when d s is smaller, and reaches a giant value p H = (1–2) × 1013 cm−2. The obtained results are interpreted in the terms of magnetic proximity effect of the DL on the QW, inducing spin polarization of the holes in the QW. Strong structural and magnetic disorder in the DL and in the QW, leading to phase segregation in them is taken into consideration. The high p H value is explained as a result of the compensation of the positive normal Hall effect component by the negative anomalous Hall effect component.

Keywords

Solid State and Materials 

References

  1. 1.
    K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, Rev. Mod. Phys. 82, 1633 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    T. Jungwirth, J. Sinova, J. Mašek, J. Kučera, A.H. MacDonald, Rev. Mod. Phys. 78, 809 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    A.F. Isakovic, Spin Transport in Ferromagnet-Semiconductor Heterostructures (LAP Lambert Academic Publishing, 2010), p. 240Google Scholar
  4. 4.
    L.V. Lutsev, A.I. Stognij, N.N. Novitskii, Phys. Rev. B 80, 184423 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    S. Caprara, V.V. Tugushev, P.M. Echenique, E.V. Chulkov, Europhys. Lett. 85, 27006 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    V.N. Men’shov, V.V. Tugushev, S. Caprara, P.M. Echenique, E.V. Chulkov, Phys. Rev. B 80, 035315 (2009) ADSCrossRefGoogle Scholar
  7. 7.
    R.C. Myers, A.C. Gossard, D.D. Awschalom, Phys. Rev. B 69, 161305 (2004) ADSCrossRefGoogle Scholar
  8. 8.
    S.V. Zaitsev, M.V. Dorokhin, A.S. Brichkin, O.V. Vikhrova, Yu.A. Danilov, B.N. Zvonkov, V.D. Kulakovskii, JETP Lett. 90, 658 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    B.A. Aronzon, V.A. Kul’bachinskii, P.V. Gurin, A.B. Davydov, V.V. Ryl’kov, A.B. Granovskii, O.V. Vikhrova, Yu.A. Danilov, B.N. Zvonkov, Y. Horikoshi, K. Onomitsu, JETP Lett. 85, 27 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    B.A. Aronzon, M.A. Pankov, V.V. Rylkov, E.Z. Meilikhov, A.S. Lagutin, E.M. Pashaev, M.A. Chuev, V.V. Kvardakov, I.A. Likhachev, O.V. Vikhrova, A.V. Lashkul, E. Lähderanta, A.S. Vedeneev, P. Kervalishvili, J. Appl. Phys. 107, 023905 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    R.K. Kawakami, E. Johnston-Halperin, L.F. Chen, M. Hanson, N. Guebels, J.S. Speck, A.C. Gossard, D.D. Awschalom, Appl. Phys. Lett. 77, 2379 (2000) ADSCrossRefGoogle Scholar
  12. 12.
    H. Luo, B.D. McCombe, M.H. Na, K. Mooney, F. Lehmann, X. Chen, M. Cheon, S.M. Wang, Y. Sasaki, X. Liu, J.K. Furdyna, Physica E 12, 366 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    B.D. McCombe, M. Na, X. Chen, M. Cheon, S. Wang, H. Luo, X. Liu, Y. Sasaki, T. Wojtowicz, J.K. Furdyna, S.J. Potashnik, P. Schiffer, Physica E 16, 90 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    A.M. Nazmul, T. Amemiya, Y. Shuto, S. Sugahara, M. Tanaka, Phys. Rev. Lett. 95, 017201 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Nazmul, S. Sugahara, M. Tanaka, Phys. Rev. B 67, 241308 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    U. Wurstbauer, I. Gronwald, U. Stoberl, A. Vogl, D. Schuh, D. Weiss, W. Wegscheider, Physica E 40, 1563 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    S. Caprara, V.V. Tugushev, E.V. Chulkov, Phys. Rev. B 84, 085311 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    R.G. Melko, R.S. Fishman, F.A. Reboredo, Phys. Rev. B 75, 115316 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    M.A. Chuev, I.A. Subbotin, E.M. Pashaev, V.V. Kvardakov, B.A. Aronzon, JETP Lett. 85, 17 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Chuev, B.A. Aronzon, E.M. Pashaev, M.V. Koval’chuk, I.A. Subbotin, V.V. Rylkov, V.V. Kvardakov, P.G. Medvedev, B.N. Zvonkov, O.V. Vikhrova, Russ. Microelectron. 37, 73 (2008)CrossRefGoogle Scholar
  21. 21.
    X.X. Guo, C. Herrmann, X. Kong, D. Kolovos-Vellianitis, L. Däweritz, K.H. Ploog, J. Cryst. Growth 278, 655 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    H. Xing, S. Keller, Y.-F. Wu, L. McCarthy, I.P. Smorchkova, D. Buttari, R. Coffie, D.S. Green, G. Parish, S. Heikman, L. Shen, N. Zhang, J.J. Xu, B.P. Keller, S.P. DenBaars, U.K. Mishra, J. Phys.: Condens. Matter 13, 7139 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    A. Dadgar, F. Schulze, J. Bläsing, A. Diez, A. Krost, M. Neuburger, E. Kohn, I. Daumiller, M. Kunze, Appl. Phys. Lett. 85, 5400 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    K.S. Burch, D.B. Shrekenhamer, E.J. Singley, J. Stephens, B.L. Sheu, R.K. Kawakami, P. Schiffer, N. Samarth, D.D. Awschalom, D.N. Basov, Phys. Rev. Lett. 97, 087208 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, New York, 1984)Google Scholar
  26. 26.
    V.A. Gergel’, R.A. Suris, Sov. Phys. JETP 48, 95 (1978)ADSGoogle Scholar
  27. 27.
    A.A. Likalter, Physica A 291, 144 (2001) ADSCrossRefGoogle Scholar
  28. 28.
    J.E. Schiber, I.J. Fritz, L.R. Dawson, Appl. Phys. Lett. 46, 187 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    B.A. Aronzon, V.V. Rylkov, A.S. Vedeneev, J. Leotin, Physica A 241, 259 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    B. Raquet, M. Goiran, N. Negre, J. Leotin, B. Aronzon, V. Rylkov, E. Meilikhov, Phys. Rev. B 62, 17144 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    B.A. Aronzon, A.S. Vedeneev, A.A. Panferov, V.V. Ryl’kov, Semiconductors 40, 1055 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    V.V. Rylkov, B.A. Aronzon, A.B. Davydov, D.Yu. Kovalev, E.Z. Meilikhov, JETP 94, 779 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    B.I. Shklovskii, Sov. Phys. Semicond. 13, 53 (1979)Google Scholar
  34. 34.
    J. Jaroszynski, T. Andrearczyk, G. Karczewski, J. Wróbel, T. Wojtowicz, D. Popović, T. Dietl, Phys. Rev. B 76, 045322 (2007) ADSCrossRefGoogle Scholar
  35. 35.
    B.I. Shklovskii, Sov. Phys. JETP 45, 152 (1977)ADSGoogle Scholar
  36. 36.
    V.V. Rylkov, B.A. Aronzon, A.S. Lagutin, V.V. Podol’skii, V.P. Lesnikov, M. Goiran, J. Galibert, B. Raquet, J. Léotin, JETP 108, 149 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    T. Holstein, Phys. Rev. 124, 1329 (1961) ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    Yu.M. Gal’perin, E.P. German, V.G. Karpov, Sov. Phys. JETP 72, 193 (1992)Google Scholar
  39. 39.
    T. Dietl, in Modern Aspects of Spin Physics, Lecture Notes in Physics, edited by W. Pötz, J. Fabian, U. Hohenester (Springer-Verlag, Berlin, Heidelberg, 2007), Vol. 712, pp. 1–46Google Scholar
  40. 40.
    M. Lee, Y. Onose, Y. Tokura, N.P. Ong, Phys. Rev. B 75, 172403 (2007) ADSCrossRefGoogle Scholar
  41. 41.
    B.A. Aronzon, A.S. Lagutin, V.V. Ryl’kov, V.V. Tugushev, V.N. Men’shov, A.V. Lashkul, R. Laiho, O.V. Vikhrova, Yu.A. Danilov, B.N. Zvonkov, JETP Lett. 87, 164 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    J.-H. Chung, S.J. Chung, S. Lee, B.J. Kirby, J.A. Borchers, Y.J. Cho, X. Liu, J.K. Furdyna, Phys. Rev. Lett. 101, 237202 (2008) ADSCrossRefGoogle Scholar
  43. 43.
    F. Maccherozzi, M. Sperl, G. Panaccione, J. Minar, S. Polesya, H. Ebert, U. Wurstbauer, M. Hochstrasser, G. Rossi, G. Woltersdorf, W. Wegscheider, C.H. Back, Phys. Rev. Lett. 101, 267201 (2008) ADSCrossRefGoogle Scholar
  44. 44.
    A. Kaminski, S. Das Sarma, Phys. Rev. B 68, 235210 (2003)ADSCrossRefGoogle Scholar
  45. 45.
    D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    M. Takahashi, Prog. Theor. Phys. 83, 815 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    D.A. Yablonskiy, Phys. Rev. B 44, 4467 (1991) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. A. Pankov
    • 1
  • B. A. Aronzon
    • 1
    • 2
  • V. V. Rylkov
    • 1
    • 6
  • A. B. Davydov
    • 1
  • V. V. Tugushev
    • 1
  • S. Caprara
    • 3
    Email author
  • I. A. Likhachev
    • 1
  • E. M. Pashaev
    • 1
  • M. A. Chuev
    • 4
  • E. Lähderanta
    • 5
  • A. S. Vedeneev
    • 6
  • A. S. Bugaev
    • 6
  1. 1.Russian Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.Institute of Applied and Theoretical ElectrodynamicsRussian Academy of SciencesMoscowRussia
  3. 3.Dipartimento di FisicaUniversità di Roma “La Sapienza”RomaItaly
  4. 4.Institute of Physics and Technology of RASMoscowRussia
  5. 5.Lappeenranta University of TechnologyLappeenrantaFinland
  6. 6.Kotel’nikov Institute of Radio Engineering and ElectronicsRASMoscow DistrictRussia

Personalised recommendations