Advertisement

Hydrogenic impurity bound polaron in a quantum dot quantum well structure

  • L. Zhou
  • Y. Xing
  • Z. P. WangEmail author
Regular Article

Abstract

A variational approach is used within the framework of effective mass approximation to study the binding energy of the hydrogenic impurity in a spherical quantum dot quantum well (QDQW) structure. The electron- and ion-longitudinal-optical (LO) phonon interactions are taken into account in the calculation. The numerical results for the CdS/HgS QDQW structure embedded in an insulator matrix show that the binding energy is sensitive both to the size of the core and the width of the shell. The binding energy decreases with the core radius being increased, and exhibits a maximum with the shell width being increased. The LO phonon effect lowers the binding energy of the on-center impurity and decreases sharply with the shell well-width being increased.

Keywords

Solid State and Materials 

References

  1. 1.
    A.D. Yoffe, Adv. Phys. 42, 173 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    U. Woggon, S.V. Gaponenko, Phys. Stat. Sol. (b) 189, 285 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    A. Eychmüller, A. Mews, H. Weller, Chem. Phys. Lett. 208, 59 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    A. Mews, A. Eychmüller, M. Giersig, D. Schooss, H. Weller, J. Phys. Chem. 98, 934 (1994)CrossRefGoogle Scholar
  5. 5.
    J.W. Haus, H.S. Zhou, I. Honma, H. Komiyama, Phys. Rev. B 47, 1359 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    D. Schooss, A. Mews, A. Eychmüller, H. Weller, Phys. Rev. B 49, 17072 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    M. Braun, C. Burda, M.A. El-Sayed, J. Phys. Chem. A 105, 5548 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Tkach, V. Holovatsky, O. Voitsekhivska, M. Mikhalyova, Phys. Stat. Sol. (b) 203, 373 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    L. Zhang, H.J. Xie, C.Y. Chen, Commun. Theor. Phys. 37, 755 (2002)Google Scholar
  10. 10.
    L. Zhang, H.J. Xie, C.Y. Chen, Phys. Rev. B 66, 205326 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    F. Comas, C. Trallero-Giner, Phys. Rev. B 67, 115301 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    F. Comas, N. Studart, Phys. Rev. B 69, 235321 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Xing, Z.P. Wang, X. Wang, Chin. Phys. B 18, 1935 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    G. Bastard, Phys. Rev. B 24, 4714 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Zhu, Phys. Rev. B 39, 8780 (1989)ADSCrossRefGoogle Scholar
  16. 16.
    J.L. Zhu, J.J. Xiong, B.L. Gu, Phys. Rev. B 41, 6001 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    N. Porras-Montenegro, S.T. Peìrez-Merchancano, Phys. Rev. B 46, 9780 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    N. Porras-Montenegro, S.T. Pérez-Merchancano, A. Latgé, J. Appl. Phys. 74, 7624 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    V. Ranjan, V.A. Singh, J. Phys: Condens. Matter 13, 8105 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    P. Platzman, Phys. Rev. 125, 1961 (1962)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    H.J. Xie, C.Y. Chen, B.K. Ma, J. Phys: Condens. Matter 12, 8623 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Manaselyan, A.A. Kirakosyan, Physica E 22, 825 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    C.L. Weng, I.C. Chen, Y.C. Tsai, Phys. Rev. B 76, 195313 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    X. Zhang, G.G. Xiong, X.B. Feng, Physica E 33, 120 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    S.H. Gong, D.Z. Yao, H.L. Jiang, H. Xiao, Phys. Lett. A 372, 3325 (2008)ADSzbMATHCrossRefGoogle Scholar
  26. 26.
    D.V. Melnikov, W. Beall Fowler, Phys. Rev. B 63, 165302 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    K. Chang, J.B. Xia, Phys. Rev. B 57, 9780 (1998)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsInner Mongolia UniversityHohhotP.R. China
  2. 2.Key Laboratory of Semiconductor Photovoltaic Technology at Universities of Inner Mongolia Autonomous RegionHohhotP.R. China

Personalised recommendations