Advertisement

Symmetry-protected quantum phase transition in topological insulators

  • L. F. LiuEmail author
  • X. L. Zhang
  • S. P. Kou
Regular Article

Abstract

In this paper, based on the lattice model of a topological insulator, we study the quantum phase transitions of topological insulators with different symmetry by calculating their phase diagrams and topological invariants. In particular, we investigate the symmetry-protected nature of the topological quantum phase transitions: topological quantum phase transitions can not be classified by symmetries. However, the symmetry of the system plays an important role: different topological quantum phase transitions are protected by different (global) symmetries and then described by different topological invariants.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    B.A. Bernevig, T.A. Hughes, S.C. Zhang, Science. 314, 1757 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    B.A. Bernevig, S.C. Zhang, Phys. Rev. Lett. 96, 106802 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, S.C. Zhang, Science 318, 766 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    J.E. Moore, Nat. Phys. 5, 378 (2009)CrossRefGoogle Scholar
  7. 7.
    J.E. Moore, Nature 464, 194 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    K.V. Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    C.L. Chien et al., The Hall Effect and Its Applications (Plenum, New York, 1980)Google Scholar
  10. 10.
    X.G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, 2004)Google Scholar
  11. 11.
    I.M. Lifshiz, Sov. Phys. JETP 11, 1130 (1960)Google Scholar
  12. 12.
    G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003)Google Scholar
  13. 13.
    X.L. Qi, Y.S. Wu, S.C. Zhang, Phys. Rev. B 74, 085308 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982)ADSCrossRefGoogle Scholar
  15. 15.
    D.N. Sheng, Z.Y. Weng, L. Sheng, F.D.M. Haldane, Phys. Rev. Lett. 97, 036808 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    R. Roy, Phys. Rev. B 79, 195321 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J.E. Moore, L. Balents, Phys. Rev. B 75, R121306 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    L. Fu, C.L. Kane, Phys. Rev. B 74, 195312 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    A.M. Essin, J.E. Moore, Phys. Rev. B 76, 165307 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    L.F. Liu, B.L. Chen, S.P. Kou, Commun. Theor. Phys. 55, 904 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Ran, A. Vishwanath, D.H. Lee, Phys. Rev. Lett. 101, 086801 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Ran, A. Vishwanath, D.H. Lee, http://arxiv.org/abs/0806.2321
  23. 23.
    C.X. Liu et al., Phys. Rev. Lett. 101, 146802 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    L.F. Liu, S.P. Kou, Int. J. Mod. Phys. B 25, 2323 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of PhysicsChinese Academy of SciencesBeijingP.R. China
  2. 2.Department of PhysicsBeijing Normal UniversityBeijingP.R. China

Personalised recommendations