Advertisement

Scissors modes and spin-orbit locking in rare earth crystals with uniaxial symmetry

  • K. Hatada
  • K. Hayakawa
  • F. PalumboEmail author
Regular Article

Abstract

We propose a new type of experiment to observe scissors modes in crystals. These experiments are based on the assumption that in systems in which the spin-orbit coupling is much larger than the crystal field, an applied magnetic field should rotate both spin and charge density profile (spin-orbit locking). Rare earth compounds should provide examples of spin-orbit locking, since their 4f electrons have standard values of the crystal field energies one order of magnitude smaller than the spin-orbit coupling. Such standard values, however, have been questioned by a recent experiment suggesting that crystal field and spin-orbit coupling should be comparable in rare earths. Our experiments should also help to settle this issue.

Keywords

Solid State and Materials 

References

  1. 1.
    K. Hatada, K. Hayakawa, F. Palumbo, Phys. Rev. B 71, 092402 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    K. Hatada, K. Hayakawa, F. Palumbo, Eur. Phys. J. B 77, 41 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    O.M. Maragó, S.A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, C.J. Foot, Phys. Rev. Lett. 84, 2056 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    G. van der Laan, E. Arenholz, A. Schmehl, D.G. Schlom, Phys. Rev. Lett. 100, 067403 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    N.L. Iudice, F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978) ADSCrossRefGoogle Scholar
  6. 6.
    D. Bohle, A. Richter, W. Steffen, A.E.L. Dieperink, N.L. Iudice, F. Palumbo O. Scholten, Phys. Lett. B 137, 27 (1984)ADSCrossRefGoogle Scholar
  7. 7.
    N.L. Iudice, Rivista Nuovo Cimento 23, 1 (2000)Google Scholar
  8. 8.
    J. Enders, H. Kaiser, P. von Neumann-Cosel, C. Rangacharyulu, A. Richter, Phys. Rev. C 59, R1851 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    E. Lipparini, S. Stringari, Phys. Rev. Lett. 63, 570 (1989)ADSCrossRefGoogle Scholar
  10. 10.
    H. Portales, E. Duval, L. Saviot, M. Fujii, M. Sumitomo, S. Hayashi, Phys. Rev. B 63, 233402 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    Ll. Serra, A. Puente, E. Lipparini, Phys. Rev. B 60, R13966 (1999) ADSCrossRefGoogle Scholar
  12. 12.
    D. Guéry-Odelin, S. Stringari, Phys. Rev. Lett. 83, 4452 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    A. Minguzzi, M.P. Tosi, Phys. Rev. A 63, 023609 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    L. Smentek, B.G. Wybourne, Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions (CRC Press, Boca Raton, 2007)Google Scholar
  15. 15.
    L. Pauling, Phys. Rev. 36, 430 (1930)ADSCrossRefGoogle Scholar
  16. 16.
    N.L. Iudice, F. Palumbo, A. Richter, M.J. Wörtche, Phys. Rev. C 42, 241 (1978)CrossRefGoogle Scholar
  17. 17.
    K. Hatada, K. Hayakawa, F. Palumbo, Phys. Rev. C 84, R011302 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    R. Skomski, J.M.D. Coey, Permanent magnetism (Institute of Physics Publishing Ltd., Bristol, 1999), p. 286 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.INFN Laboratori Nazionali di FrascatiFrascatiItaly
  2. 2.Équipe de Physique des Surfaces et Interfaces, Institut de Physique de Rennes, UMR UR1-CNRS 6251, Campus de BeaulieuUniversité de Rennes 1Rennes CedexFrance
  3. 3.Centro FermiCompendio ViminaleRomaItaly

Personalised recommendations