Spurious trend switching phenomena in financial markets

Regular Article


The observations of power laws in the time to extrema of volatility, volume and intertrade times, from milliseconds to years reported by Preis et al. (2010, 2011), are shown to result straightforwardly from the selection of biased statistical subsets of realizations in otherwise featureless processes such as random walks. The bias stems from the selection of price peaks that imposes a condition on the statistics of price change and of trade volumes that skew their distributions. For the intertrade times, the extrema and power laws results from the format of transaction data.


Statistical and Nonlinear Physics 


  1. 1.
    L. Bachelier, Ann. Sci. Éc. Norm. Supér. 3e Sér. 17, 21 (1900)MathSciNetGoogle Scholar
  2. 2.
    P. Cootner, The Random Character of Stock Market Prices (MIT Press, Cambridge, 1965)Google Scholar
  3. 3.
    J.-P. Bouchaud, M. Potters, Theory of financial risks: from statistical physics to risk management, 1st edn. (Cambridge University Press, Cambridge, 2000), p. 232Google Scholar
  4. 4.
    R. Cont, Quant. Financ. 1, 223 (2001)CrossRefGoogle Scholar
  5. 5.
    T. Preis, Eur. Phys. J. Spec. Top. 194, 5 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    T. Preis, J.J. Schneider, H.E. Stanley, PNAS 108, 7674 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    T. Preis, H.E. Stanley, Physics World 24, 29 (2011)Google Scholar
  8. 8.
    T. Preis, H.E. Stanley, J. Stat. Phys. 138, 431 (2010) ADSMATHCrossRefGoogle Scholar
  9. 9.
    H.E. Stanley, S.V. Buldyrev, G. Franzese, S. Havlin, F. Mallamace, P. Kumar, V. Plerou, T. Preis, Physica A 389, 2880 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    T. Preis, H.E. Stanley, Trend Switching Processes, in Financial Markets, in Econophysics Approaches to Large-Scale Business Data and Financial Crisis, edited by M. Takayasu, T. Watanabe, H. Takayasu, (Springer, Tokyo, Japan, 2010), pp. 3–26Google Scholar
  11. 11.
    T. Preis, H.E. Stanley, Bulletin of the Asia Pacific Center for Theoretical Physics 23, 18 (2009)Google Scholar
  12. 12.
    J. Karpoff, J. Financ. Quant. Anal. 22, 109 (1987)CrossRefGoogle Scholar
  13. 13.
    A. Saichev, D. Sornette, Phys. Rev. E 74, 011111 (2006) MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    A. Saichev, V. Filimonov, JETP Lett. 87, 506 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    A. Helmstetter, D. Sornette, Phys. Rev. Lett. 92, 129801 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    M. Werner, D. Sornette, Phys. Rev. Lett. 99, 179801 (2007) ADSCrossRefGoogle Scholar
  17. 17.
    A. Saichev, D. Sornette, Phys. Rev. Lett. 97, 078501 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    V. Plerou, P. Gopikrishnan, H.E. Stanley, Nature 421, 130 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    M. Potters, J.-P. Bouchaud, Comment on: Two-Phase Behaviour of Financial Markets (2003), arXiv:cond-mat/0304514v1Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Management, Technology and EconomicsETH ZurichZurichSwitzerland
  2. 2.Department of Management, Technology and Economicsc/o University of GenevaGeneva 4Switzerland

Personalised recommendations