Electronic conductance via atomic wires: a phase field matching theory approach

  • D. SzczęśniakEmail author
  • A. Khater
Regular Article


A model is presented for the quantum transport of electrons, across finite atomic wire nanojunctions between electric leads, at zero bias limit. In order to derive the appropriate transmission and reflection spectra, familiar in the Landauer-Büttiker formalism, we develop the algebraic phase field matching theory (PFMT). In particular, we apply our model calculations to determine the electronic conductance for freely suspended monatomic linear sodium wires (MLNaW) between leads of the same element, and for the diatomic copper-cobalt wires (DLCuCoW) between copper leads on a Cu(111) substrate. Calculations for the MLNaW system confirm the correctness and functionality of our PFMT approach. We present novel transmission spectra for this system, and show that its transport properties exhibit the conductance oscillations for the odd- and even-number wires in agreement with previously reported first-principle results. The numerical calculations for the DLCuCoW wire nanojunctions are motivated by the stability of these systems at low temperatures. Our results for the transmission spectra yield for this system, at its Fermi energy, a monotonic exponential decay of the conductance with increasing wire length of the Cu-Co pairs. This is a cumulative effect which is discussed in detail in the present work, and may prove useful for applications in nanocircuits. Furthermore, our PFMT formalism can be considered as a compact and efficient tool for the study of the electronic quantum transport for a wide range of nanomaterial wire systems. It provides a trade-off in computational efficiency and predictive capability as compared to slower first-principle based methods, and has the potential to treat the conductance properties of more complex molecular nanojunctions.


Mesoscopic and Nanoscale Systems 


  1. 1.
    N. Agraït, A. Levy-Yeyati, J.M. van Ruitenbeek, Phys. Rep. 377, 81 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    A. Nitzan, M.A. Ratner, Science 300, 1384 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    V. Lamba, S.J. Engles, D. Engles, S.S. Malik, M. Verma, Proceeding I. Mech. E. 223, 57 (2009)Google Scholar
  4. 4.
    A.M.C. Valkering, A.I. Mares, C. Untiedt, K.B. Gavan, T.H. Oosterkamp, J.M. van Ruitenbeek, Rev. Sci. Instrum. 76, 103903 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    D.T. Smith, J.R. Pratt, F. Tavazza, L.E. Levine, A.M. Chaka, J. Appl. Phys. 107, 084307 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    J. Kröger, A. Sperl, N. Néel, R. Berndt, Journal of Scanning Probe Microscopy 4, 49 (2009)CrossRefGoogle Scholar
  7. 7.
    C. Jin, H. Lan, L. Peng, K. Suenaga, S. Iijima, Phys. Rev. Lett. 102, 205501 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    J. Bettini, F. Sato, P.Z. Coura, S.O. Dantas, D.S. Galvão, D. Ugarte, Nature Nanotechnol. 1, 182 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    N.D. Lang, Phys. Rev. Lett. 79, 1357 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    R.H.M. Smit, C. Untiedt, G. Rubio-Bollinger, R.C. Segers, J.M. van Ruitenbeek, Phys. Rev. Lett. 91, 076805 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Y.J. Lee, M. Brandbyge, M.J. Puska, J. Taylor, K. Stokbro, R.M. Nieminen, Phys. Rev. B 69, 125409 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    P.A. Khomyakov, G. Brocks, Phys. Rev. B 74, 165416 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    K.S. Thygesen, K.W. Jacobsen, Phys. Rev. Lett. 91, 146801 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Xu, X.Q. Shi, Z. Zeng, Z.Y. Zeng, B.W. Li, J. Phys.: Condens. Matter 19, 056010 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    L. de la Vega, A. Martín-Rodero, A. Levy Yeyati, A. Saúl, Phys. Rev. B 70, 113107 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    N.D. Lang, Ph. Avouris, Phys. Rev. Lett. 81, 3515 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    L. Shen, M. Zeng, S.-W. Yang, C. Zhang, X. Wang, Y. Feng, J. Am. Chem. Soc. 132, 11481 (2010)CrossRefGoogle Scholar
  18. 18.
    J.-L. Mozos, C.C. Wan, G. Taraschi, J. Wang, H. Guo, Phys. Rev. B 56, 4351 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    Y.-H. Zhou, X.-H. Zheng, Y. Xu, Z.Y. Zeng, J. Phys.: Condens. Matter 20, 045225 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Ke, K. Xia, H. Guo, Phys. Rev. Lett. 100, 166805 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    P. Havu, V. Havu, M.J. Puska, M.H. Hakala, A.S. Foster, R.M. Nieminen, J. Chem. Phys. 124, 054707 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    R.G. Newton, Scattering Theory of Waves and Particles (Dover Publications, New York, 2002)Google Scholar
  23. 23.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957)CrossRefMathSciNetGoogle Scholar
  24. 24.
    M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    S. Tsukamoto, Y. Egami, T. Ono, J. Comput. Theor. Nanosci. 6, 2521 (2009)CrossRefGoogle Scholar
  26. 26.
    Y. Egami, K. Hirose, T. Ono, Phys. Rev. E 82, 056706 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    G.P. Zhang, X.W. Fang, Y.X. Yao, C.Z. Wang, Z.J. Ding, K.M. Ho, J. Phys.: Condens. Matter 23, 025302 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    D. Nozaki, H.M. Pastawski, G. Cuniberti, New J. Phys. 12, 063004 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    T. Ando, Phys. Rev. B 44, 8017 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)Google Scholar
  31. 31.
    P.S. Krstić, X.-G. Zhang, W.H. Butler, Phys. Rev. B 66, 205319 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    I. Deretzis, A. La Magna, Eur. Phys. J. B 81, 15 (2011), references thereinADSCrossRefGoogle Scholar
  33. 33.
    A. Khater, B. Bourahla, M. Abou Ghantous, R. Tigrine, R. Chadli, Eur. Phys. J. B 82, 53 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    A. Khater, M. Belhadi, M. Abou Ghantous, Eur. Phys. J. B 80, 363 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    R. Tigrine, A. Khater, B. Bourahla, M. Abou Ghantous, O. Rafil, Eur. Phys. J. B 62, 59 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    A. Virlouvet, A. Khater, H. Aouchiche, O. Rafil, K. Maschke, Phys. Rev. B 59, 4933 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    A. Fellay, F. Gagel, K. Maschke, A. Virlouvet, A. Khater, Phys. Rev. B 55, 1707 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    J.C. Slater, G.F. Koster, Phys. Rev. 94, 1498 (1954)ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    D. Szczęśniak, A. Khater, R. Szczęśniak, Z. Ba¸k, in Solid State Physics in Modern Materials Research, edited by K. Dziliński, J.J. Wysłocki (CUT Publishing House, Czestochowa, 2010), pp. 161–173Google Scholar
  40. 40.
    A. Khater, D. Szczęśniak, J. Phys.: Conf. Ser. 289, 012013 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    H. Rabani, M. Mardaani, Solid State Commun. 152, 235 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    J. Chen, L. Yang, H. Yang, J. Dong, Phys. Lett. A 316, 101 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Wu, P.A. Childs, Nanoscale Res. Lett. 6, 62 (2011)ADSGoogle Scholar
  44. 44.
    Z. Li, D.S. Kosov, J. Phys.: Condens. Matter 18, 1347 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Y. Egami, T. Ono, K. Hirose, Phys. Rev. B 72, 125318 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    A. Zugarramurdi, A.G. Borisov, N. Zabala, E.V. Chulkov, M.J. Puska, Phys. Rev. B 83, 035402 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    J. Lagoute, C. Nacci, S. Fölsch, Phys. Rev. Lett. 98, 146804 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    S. Fölsch, P. Hyldgaard, R. Koch, K.H. Ploog, Phys. Rev. Lett. 92, 056803 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    J. Lagoute, X. Liu, S. Fölsch, Phys. Rev. B 74, 125410 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    H.H.B. Sørensen, P.C. Hansen, D.E. Petersen, S. Skelboe, K. Stokbro, Phys. Rev. B 79, 205322 (2009), references thereinADSCrossRefGoogle Scholar
  51. 51.
    J.M. Krans, J.M. van Ruitenbeek, V.V. Fisun, I.K. Yanson, L.J. de Jongh, Nature 375, 767 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    W.A. Harrison, Elementary Electronic Structure (World Scientific, Singapore, 2004)Google Scholar
  53. 53.
    F. Yamaguchi, T. Yamada, Y. Yamamoto, Solid State Commun. 102, 779 (1997)ADSCrossRefGoogle Scholar
  54. 54.
    M. Saubanère, J.L. Ricardo-Chávez, G.M. Pastor, Phys. Rev. B 82, 054436 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    O. Brovko, P.A. Ignatiev, V.S. Stepanyuk, Phys. Rev. B 83, 125415 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    N. Néel, R. Berndt, J. Kröget, T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 107, 106804 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    N. Oncel, J. Phys.: Condens. Matter 20, 393001 (2008)CrossRefGoogle Scholar
  58. 58.
    N. Nilius, T.M. Wallis, W. Ho, Science 297, 1853 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    T.M. Wallis, N. Nilius, G. Mikaelian, W. Ho, J. Chem. Phys. 122, 011101 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    A. Delga, J. Lagoute, V. Repain, C. Chacon, Y. Girard, M. Marathe, S. Narasimhan, S. Rousset, Phys. Rev. B 84, 035416 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    D. Szczęśniak, A. Khater, R. Szczȩśniak, Z. Ba¸k (2012), arXiv:1204.4287Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute for Molecules and Materials UMR 6283University of MaineLe MansFrance
  2. 2.Institute of PhysicsJan Długosz University in CzęstochowaCzęstochowaPoland

Personalised recommendations